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CISOIDAL OSCILLATIONS 

BY GEORGE A . CAMPBELL 

The oscillations here defined as " cisoidal oscillations " are 
those of the form 

C eis pt = C (cos pt+i sin pt) = Ceipt (1) 

where t is the time, e the Napierian base, i = V — 1 the imaginary 
symbol,1 and eis an abbreviation for the complete trigonometric 
expression. The constants C and p may be any scalar quantities, 
either real or complex. The oscillations are sustained, logarith­
mically damped or aperiodic, according as the time coefficient p 
is real, complex, or pure imaginary. The following discussion 
will, in general, apply indifferently to all three cases. 

The use of the term " cisoidal oscillations " emphasizes the 
distinctive character of the subject, while tending to keep in 
mind the close connection between these oscillations and sinu­
soidal oscillations. The fact that one of the algebraic curves is 
called a " cissoid " can hardly lead to confusion. 

The practical importance of cisoidal oscillations rests upon 
the following properties: 

1. In all cases where the principle of superposition holds, any 
1. The use of * (or Greek L) for the imaginary symbol is nearly universal 

in mathematical work, which is a very strong reason for retaining it in 
the applications of mathematics in electrical engineering. Aside, how­
ever, from the matter of established conventions and facility of reference 
to mathematical literature, the substitution of the symbol j is objection­
able because of the vector terminology with which it has become asso­
ciated in engineering literature, and also because of the confusion resulting 
from the divided practice of engineering writers, some using j for +i and 
others using j for — i. 

NOTE.—This paper is to be presented at the Pacific Coast meeting, 
of the A.I.E.E., Los Angeles, Cal., April 25-28, 1911. Notice of oral 
discussion or any written discussion should be mailed to reach the Chair­
man of the Los Angeles Section, J. E. McDonald, on or before date of 
meeting. Written contributions received within 30 days thereafter will 
be treated as if presented at the meeting. 

789 



700 CAMPBELL: CISOIDAL OSCILLATIONS [April 25 

oscillation can be regarded as a compound cisoidal oscillation, 
i.e., the algebraic summation of simple cisoidal oscillations. 

2. Cisoidal oscillations are uniquely simple because the ratio 
of the instantaneous electromotive force to the instantaneous 
current is not a function of the time. 

3. Cisoidal oscillations involve scalar magnitudes only so that 
all algebraical relations and operations applying to the real 
physical phenomena may be extended to them. 

4. The solution for cisoidal oscillations in any finite network 
may be written down directly, without solving differential equa­
tions or the use of integration or differentiation. 

SCALAR CHARACTER OF CISOIDAL OSCILLATIONS 
As complex quantities and exponential functions of complex 

quantities follow the laws of ordinary algebra, they introduce 
scalar quantities and not vector quantities. This is a matter 
of great importance, since ordinary algebra is simpler than vector 
algebra. The wide-spread use of the term vector in connection 
with complex quantities in alternating current theory is unfor­
tunate for it is logically incorrect, and so has led to confusion, 
and it also tends to divert attention from the algebraical theory 
of complex quantities, which is of great practical assistance in the 
treatment of cisoidal oscillations. 

When the direction of a current is confined to one or the other 
of two opposite directions by the use of a linear conductor, we 
can vary its scalar magnitude only; it is no more correct to 
speak of representing this scalar quantity by a vector when it is 
complex than when it is real. It is only when the electrical 
phenomena takes place in two or three dimensions in space that 
vector variables are, involved in the mathematical treatment. 

With complex quantities the power continues to be the pro­
duct of electromotive force and current. A steady imaginary 
current flowing through a resistance, therefore, dissipates nega­
tive real power, that is, energy is absorbed by the electrical phe­
nomena taking place, which tends to cool the conductor. Simi­
larly the magnitudes of the kinetic energy of an inductance and 
the potential energy of a condenser are real negative quantities in 
case the instantaneous current and potential are pure imaginary. 
As the power with complex quantities may be either positive or 
negative, or in general have any argument, the total power in a 
portion of a network, such as two or more resistances, may 
vanish because the several powers in the individual elements 
mutually cancel when added together. 
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If the current and electromotive force are each cisoidal the 
associated power is also cisoidal with a time coefficient equal to 
the algebraical sum of the time coefficients of the electromotive 
force and current; when these two coefficients are equal and 
opposite in sign the power is constant with respect to the time. 

We might have defined the cisoidal oscillation using through­
out — i in place of i, which would change all quantities, in­
cluding the impedances, to their conjugates. But we follow, 
of course, the general practice of taking positive quantities as 
the norm, in consequence of which the sign for inductive reac­
tances is positive, and the sign for capacity reactances is nega­
tive. 

CORRELATED OSCILLATIONS 

The complete formal solution of a sinusoidal alternating 
current problem by the aid of complex quantities involves the 
following steps: 

1. Resolution of the periodic data into the sum of cisoidal 
oscillations having the time factors eis (+pt) and eis (— pt). 

2. Solution of the problem for the eis (+pt) component taken 
alone; the solution for the eis (— pt) component is then ob­
tained directly from this by changing all complex quantities to 
their conjugates. 

3. Superposition of these two cisoidal solutions to obtain the 
real physical oscillation. 

It is however not necessary to carry through the formal proof 
in individual cases, this being replaced by the following correla­
tion between the real and the complex oscillations. 

/ / throughout any invariable network a cisoidal oscillation and a 
cosinusoidal oscillation (all of one time coefficient p) have electro­
motive forces and currents of the same effective values (moduli) 
and angles (arguments), they will be called correlated oscillations. 

The alternating powers involved throughout correlated oscillations 
are equal to each other as regards amplitudes (moduli) and 
angles (arguments) ; the cosinusoidal oscillation having also non-
alternating power components which are equal, as regards ampli­
tudes (moduli) and phase angles (arguments) to the powers which 
would be associated with the correlated cisoidal electromotive forces 
taken with the conjugates of the correlated cisoidal currents. 

Or in other words : 
The instantaneous cosinusoidal electromotive forces and currents 

are the real components of the correlated cisoidal electromotive 
forces and currents multiplied by the factor \Ξ2. 
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The instantaneous powers involved in a cosinusoidal oscillation 
are equal to the real components of the cisoidal powers in the 
correlated cisoidal oscillation, augmented by the real components of 
the powers involved in the correlated cisoidal oscillation after chang­
ing the currents {or electromotive forces) to their conjugates. 

In the typical notation the correlated oscillations thus defined 
have, if p = pi+p2i 

Instan­
taneous 

e.m.f. 

current 

power 

impedance 

Cosinusoidal 

\/2\E\er*' cos {pi t+argE) 
V2\I\e~^ cos{p1t+argI) (2) 

\EI\er**** [cos{2pit+arg{EI))+cosarg j 1 

\Ej cos {p} t + argE) 
i 11 cos {pi t + arg I) 

In much of the actual algebraical work connected with cisoidal 
oscillations, we may drop the time factors eipt and e2ipt and write 
only E, I and El (or P = E I) with considerable resulting sim­
plification and no liability of introducing confusion. 

It is to be particularly noted that the magnitudes which are 
equal to the corresponding cisoidal moduli are the effective 
values of the cosinusoidal electromotive forces or currents and 
the amplitudes of the cosinusoidal power components. On the 
other hand, the cisoidal arguments are uniformly equal to the 
corresponding real angles, this angle reducing for the non-
oscillatory cosinusoidal power component to the constant angle 
of lag or lead. 

The preceding statements supply the working rules for making 
the change from the real physical cosinusoidal oscillation to the 
ideal cisoidal oscillation and vice versa. This connection is, 
as regards electromotive force and current, one of mutual re-
solvability as is expressed by the following formulae : 

V2\C\er** cos (/>, t+arg C) = —^ Ceipt + - ^ C e~ip,i 

C V " = - ^ = [V2 |C |e -^cos {px t+arg Q] 
v 2 (3) 

+ U^m e'P'tcos fa t+arg [C - ~^-)l ('-�i>)] 
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the first giving the cosinusoid in terms of the correlated cisoid 
and its conjugate cisoid, the second giving the cisoid in terms of 
the correlated cosinusoid and the consinusoid with its phase 
retarded 90 degrees. On account of this mutual resolvability 
either the cisoidal oscillation or the cosinusoidal oscillation 
may be regarded as being obtained by summation from the 
other. 

If any particular cisoidal or cosinusoidal oscillation is possible 
the correlated oscillation is also possible. 

It is somewhat arbitrary as to the exact functions which we 
define as correlated oscillations. The sine might have been 
taken in place of the cosine and the amplitudes in place of the 
effective values, but on the whole these alternatives do not seem 
to afford quite the same convenience, but only because the state­
ments become slightly more involved. We shall however 
continue to use the term " sinusoid " as the general designation 
for the sine function having any arbitrary phase angle including 
thereby the cosine function. 

The correlation between the sinusoidal oscillations and cisoidal. 
oscillations is so simple that it is not ordinarily necessary to 
indicate the step from one to the other in special applications of 
the method. But this omission has led to the cisoidal solution 
being in some way regarded as representing the actual sinusoidal 
oscillation, which is not the case as is very clearly shown by the 
power relations. It is therefore necessary to lay emphasis upon 
the fact that the use of complex quantities affords an indirect 
method, and not a symbolic method of solving real cases of 
oscillations and that the complete application of the method 
involves an initial algebraical resolution of the real data and a 
final algebraical summation of the complex results as an essential 
and integral part of the method. 

GENERAL EQUATIONS FOR ANY NETWORK 

In any invariable network the actual distribution of current due 
to any impressed electromotive forces is such as to make the power 
dissipated assume the stationary value2 which is consistent with the 
conditions imposed by current continuity and the conservation of 

2. A function assumes a stationary value when it is not altered by any 
possible infinitesimal change in the system of variables upon which it 
depends; the first derivatives of the function, with respect to each of a set 
of independent variables is zero at a stationary value. Stationary is 
thus a generalization of maximum, minimum and point of inflection, but 
without any implication beyond the vanishing gradient. 
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energy. The theorem assumes that each branch or circuit 
contains resistance, a condition which corresponds to the physical 
fact and involves no theoretical limitation as the resistances may 
be as small as desired, or any number of the resistances may be 
allowed to vanish completely after playing their part in the form­
ation of the general solution. 

This theorem may be established directly from the principles 
of dynamics, but we will here show that it is the equivalent of 
the generalized Kirchhoff equations. 

The condition imposed by the conservation of energy may be 
expressed in the form of the equation of activity by equating the 
total power supplied by the impressed forces to the sum of the 
powers taken separately by the resistances (including con­
ductances), self-inductances, mutual inductances and capacities. 
That is 

2**iq=2̂ 3 iq+Έ ( 2 ~2Lq iq2+2 Mqr iq i r) 
+it2i 2cq -2iRqtq+2jLqtqdr 

i NT' TU- i' dir , . diq \ ^yiqjiqdt (λλ 

+ 2 , M<\U -dT +*r-di) + 2i~cr (4) 

The condition of continuity may be introduced by expressing 
the currents in terms of any set of independent, circuital currents 
Cu c2l . . . cm, where m is the number of degrees of freedom of 
the network. This gives one equation for each of the I branches 

^ = 0^16:1+^2^2+ . . . aim cm ( g = l , 2 . . . I) (5) 

where the coefficient aqs — ± 1 or 0, according as branch q is or is 
not a part of circuit 5, the sign in the first case being positive, 
or negative, according as the positive direction for the branch and 
for the circuit are or are not concurrent. 

The power dissipated XRq iq
2 is a homogeneous expression of 

the second order in terms of the m independent circuital currents, 
while the remainder of equation (4) is of the first degree in these 
currents. The stationary value for the power dissipated under 
the assumed conditions will therefore be found by first introduc­
ing the multiplier \ as a coefficient for ^Rq iq

2 and then dif­
ferentiating (4) with respect to cs which gives the following set 
of m equations: 
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+ « - ^ ) + 2 á - ficf (s=1·2· · · ·m) (6) 

The set of equations (6) is identical with the generalized 
Kirchhoff equations of electromotive force for the m circuits taken 
in the positive direction for the currents cs, since the coefficients 
ags and ars provide the proper sign for each effective electromotive 
force occurring in these circuits and exclude all electromotive 
forces not occurring in the several circuits. The Kirchhoff laws 
and the above condition of stationary dissipation are therefore 
mutually equivalent. 

In subsequent work it will be more convenient to merge the 
conditions of continuity in the equation of activity (4) than 
to use separate equations such as (5) to cover these conditions. 
This may be accomplished either by reducing the currents ap­
pearing in the equation of activity to a number equal to and so 
chosen as to correspond with the degrees of freedom of the net­
work, or by adding fictitious currents which correspond to the 
significant branch points. 

The first transformation is accomplished by replacing the 
branch currents iq in (4) by circuital currents such as cs by the 
aid of »such equations as (5). Rearranging the terms the form 
of the equation of activity may still be kept the same as in (4), 
but all quantities, e, i, R, L, M, C now refer to complete circuits 
and not to individual branches. 

The second transformation follows from the identity of the 
condition of continuity, in the form 

<Pf = Mfi ii+Mf2Μ2+ . . . Mfrir · . · = 0, i k f / r = ± l o r 0 , 

/ = ( / + l , . . . l+tn), (7) 

with the condition that a fictitious circuit of zero impedance can 
experience no resultant electromotive force whatever be the 
currents flowing in the branches 1, 2, . . . r . . . with which 
it has mutual impedances Mf\, Mf2, . . . Mfr . · . . This 
physical consideration shows that the conditions of continuity 
will be included in (4) by extending the summation to cover 
fictitious circuits of zero self-impedances and with zero mutual 
impedances between each other and all real branches excepting 
only Mfr = ± 1 when the real branch r terminates in the branch 
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2-

point / , the sign being positive or negative at the positive or 
negative end of the branch respectively. 

To prove the same analytically we multiply each equation of 
(7) by if, take their sum, differentiate with respect to t and add 
this expression, which we may denote by 

*~Ý-2**-Â-22*»** 
to (4), which is permissible since B must be equal to zero. On 
differentiating (4) (with multiplier % added to IRqiq

2) with 
respect to the real current iq, B introduces the new terms 

di* d<pf 
, -p— to (6), and these are precisely the additional 

diff terms required by the conditions of continuity, since —j— plays 

the part of an undetermined multiplier. Again differentiation 

with respect to the fictitious current if gives -=- (Pf = 0 or <Pf = Q, 

the constant of integration being zero, as infinite energy in the 
fictitious circuits is to be excluded, and these are the equations 
of continuity (7). Thus after the addition of B, equation (4) 
includes all of the conditions of continuity. 

It will be assumed in the subsequent work that the network 
under discussion has been transformed into a set of simple cir­
cuits, thus reducing the conditional equations to the equation 
of activity. The coefficients occurring in this equation and the 
number of currents entering it will depend upon the particular 
choice of simple circuits, but the general discussion of the net­
work will be, to a considerable extent, independent of the choice 
of the simple circuit system. In concrete applications it will 
be advantageous, in order to have as few variables as possible, 
to use the first of the above transformations. In general work, 
however, the second transformation presents the distinct ad­
vantage of including all branches symmetrically. 

GENERAL EQUATIONS FOR CISOIDAL OSCILLATIONS 
For cisoidal oscillations the preceding theorem may be given 

the following still simpler form: 
The activity of the external sources of power which produce a 

steady cisoidal oscillation in any invariable network assumes the 
stationary value which is consistent with the conditions imposed by 
current continuity and the conservation of energy. 
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With cisoidal oscillations the differentiations and integrations 
indicated in the equation of activity (4) may be carried out and 
after dividing by the common factor e2ipt and introducing the 
self and mutual impedances Zqq( = Zq), Zqr (Zrq = Zqr)1 the 
equation becomes 

q=*n q—n q<r=n q=n r**n 

2^« h=2z« 7«2+22z"T"h = 2 2z«'7«ir <*> 
q=l q-\ r>q=l <z=l r = l 

The left-hand and the right-hand sides of this equation are 
homogeneous functions of the first and second orders in terms of 
the currents. Comparison with the first and second order terms 
in (4) shows that the right-hand side of equation (8), which is 
the total power taken by the network, may be substituted in the 
general theorem for the power dissipated. Or, since the two 
sides of equation (8) are always equal, the left-hand side, which 
is the power supplied by the sources, may equally well be taken; 
whence the above theorem follows. 

Stationary activity involves stationary driving point impedance 
and the theorem might be restated in terms of the impedances. 

Differentiating equation (8) with respect to each of the n cur­
rents (after introducing the multiplier \ for the right-hand side) 
we have for the general equations determining the distribution 
of current: 

Z\\ 7i+Zi2 li -\-Z\n In = E\ 

Zi\ I1+Z22 I2 +^2n In — E* 

(9) 
Zn\ I\-\-Zn2 I2 -\-Znn In—En 

The currents are therefore 

r = l 

where A is the determinant of the impedances occurring as 
coefficients of the currents in (9) and Aqr is the co-factor of Zqr 
in this determinant. Substituting these in equation (8), we 
find that the stationary power, that is the power which is 
actually expended on the network, is 

q=n r—n 
Ñ â 2 2 ^ Á " ^ Ã · (10) 

i » l r - 1 
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where Ae differs from the determinant A only in having each 
element Zqr augmented by EqEr. 

Self- and mutual-admittances may be substituted for the self-
and mutual impedances in the right-hand side of equation (8), 
the form of the expression being kept unchanged by simul­
taneously substituting potential differences for currents. The 
solution in terms of the admittances will then be obtained from 
a determinant in which the admittances enter precisely as do 
the impedances in " A ". For certain problems, as will be 
readily seen, the admittance determinant is much more con­
venient than the impedance determinant. While the im­
pedance determinant is made the special object of discussion in 
the remainder of this paper, it is to be understood that cor­
responding applications may be made of the admittance de­
terminant. 

T H E DISCRIMINANT OF A NETWORK 

The discriminant A of a network is defined as the determinant 
having the element Zqr in the qth row and rth column ; Zqr being the 
mutual impedance between circuits q and r or the self-impedance 
of circuit q when q = r;the determinant to include the self- and mutual 
impedances of the system of simple circuits obtained by eliminating 
the branch points by closing each branch on itself and replacing each 
branch point, in excess of one in each connected part of the system, 
by a fictitious circuit of zero self-impedance connected by mutual 
impedances + i and — i to the several branches which have their 
positive or negative ends respectively at this branch point. 

This will be taken as the normal form of the discriminant, 
since it is symmetrical in terms of all of the real branches and real 
closed circuits of the network. That it is also essentially sym­
metrical in all of the branch points follows from the fact that 
the value of the determinant is independent of the choice of the 
particular branch points to be excluded. The discriminant A 
is of fundamental importance in the discussion of the network 
because all effective impedances of the network may be deter­
mined directly from its array. 

The degree of A in terms of the actual impedances of the net­
work is equal to the number of degrees of freedom of the network, 
which is the same as the number of branches, reduced by the 
number of branch points, omitting one in each connected part of 
the system. The determinant A is of the first degree in each self-
impedance, and of the second degree in each mutual impedance 
when physically considered, that is when the order of the sub­
scripts is ignored (ZrqEEZqr). 
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The algebraical co-factor of the product of the elements lo­
cated at the intersection of rows j , q, s, . . . with columns 
k, r, t '. . . respectively of determinant A will be denoted by 
Ajk.qr.st . . . =Aa, where a stands for the paired list j k . q r 
. s t . . . The arithmetical value of the co-factor depends 
thus only on the choice of rows j , qy s, . . . and columns k, r, t. . . 
which occur in the subscript, while its algebraical sign depends 
upon the sequence of the rows and columns and is changed by 
each inversion of rows or columns. It follows that if the same 
row or column occurs twice in the subscript the value of the co-
factor is zero. Where we have occasion to restore one or more 
rows or columns of the original determinant to a co-factor Aa, 
the elements to be removed from a will be indicated as a divisor 
of the subscript a. The algebraical value of the expression A*. 

fi 
is uniquely and completely determined by canceling the de­
nominator against a part or the whole of the numerator, making 
inversions, if necessary, in the numerator or denominator; in 
case the denominator cannot be entirely eliminated by this 
process the symbol indicates a determinant with identical rows 
or columns, and it is therefore equal to zero. For example: 

A 11.22 = — A 12.21 = ~ A 21, -4]2·13 = 0 , A 12.23 = 0 , A 11.22 = — A 
12 12 34 12-21 

(11) 

{0iiq = r 
τqr= \ 

where the differentiations correspond to actual physical varia­
tions in the impedances and therefore treat mutual impedances 
with interchanged subscripts as identical. 

By applying the following rules the expanded expressions for 
A and its co-factors may be written down directly from the simple 
circuit system replacing the network, without reference to the 
determinant. This method of expansion is often more con­
venient than the use of the ordinary rules for expanding the 
determinant. 

A is the sum of all possible products in which each circuit is 
represented either by its self-impedance or by its mutual im­
pedance to another circuit, the mutual impedances occurring, 
however, in closed cycles of two or more constituents only, so 

and Ajk.qrst-- = 0jk+τar+τst... y 

^ο, 
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that the subscripts may be written k m, m q, qu, . . . w k, 
each cycle introducing the sign-factor + or — according as the 
cycle contains an odd or an even number of terms ; each cycle of 
three or more circuits also introducing the factor 2 to care for the 
alternative way of associating the mutual impedances and the 
circuits of the cycle. 

Aqq is the coefficient of Zqq in A, i.e., Aqq is the value taken 
by A when circuit q is removed from the network. 

A qr is the coefficient of Zqr after writing A in symmetrical form 
with respect to Zqr and Z rqy I.e.y Aqr is the value taken by A if 
circuits q and r are represented in each product by the mutual 
impedances 1 and Zqr respectively. 

EFFECTIVE IMPEDANCES OF ANY NETWORK 
In the theoretical discussion of networks we are concerned 

not so much with particular values of the electromotive forces 
and currents, as with their relative values. For this reason 
the impedances, which are the ratios of electromotive forces to 
currents, and the attenuation factors, which are either the ratios 
of currents to each other, or of electromotive forces to each other, 
are chosen as the immediate objects of investigation. 

Effective impedances may-be defined in various ways, for 
example as: 

, v potential of point Sj minus potential of point Sk 
current at point si ' 

(h\ £ P o w e r taken by any part S» of network 
product of currents at points sq and sr ' 

(5 = 1 or ^ for self and mutual impedances respectively.) 

( \ JL Pr°duct of potential differences points sty su and sv, sw 
δ power taken by any part Sx of network 

(ä = 1 or -J- for self- and mutual impedances respectively.) 
(d) The impedances required to make a normal type of network 

of the requisite number of parameters equivalent to the 
given network under specified conditions of operation. 

As examples of the above definitions we may instance the 
following : 

The mutual impedance of a transformer is the ratio, with sign 
reversed, of the electromotive force induced in either winding 
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1 Sq,(Sq+Sr)= cosh-
2SqSr

1(Hq+Hr) (Hq+ H r +4H qr) +l!q-Hr V Uqr( Uq+ Ur)( UqUqr+ UrUqr+4 UqUr) + Uq-Ur) Uqr
~ 4 2 2(Uq+U,,+Uqr)

1(Hq+ Hr)(Hq+Hr+4Hqr) _ Hq-Hr V Uqr( Uq+ Ur) (UqUqr+ UrUqr+4 UqUr)-( Uq-Ur) Uqr
~ 4 2 2(Uq + U,+ Uqr}

-1 H q+Hr+2Hqr h-1 (1 (Uq+Ur) Uqr)
cosh cos + 2 [T

q
c,zu.;

V(Jq+Jr)2_
J q/ + Jq-Jr I __A_ + (A,,-A qq)2+ Arr-Aft

2 2 ~ A qq•rr 2 A qq ." 2 A f cr-rr

V(Jq+Jr)2_Jqr2 _ Jq-Jr I__A_ + (Arr-A qq)2_A~-Aff
2 2 ~ A qq.r, 2 A qq •rr 2 Afle"

-(Jq + J,) -1 A qq + A r ,
cosh-1 cosh

2Jq, 2A q,
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to the inducing current flowing in the other winding, which falls 
under definition (a) if the secondary is open-circuited. 

In discussing below the power taken by the actual resistances 
in a network use is made of definition (b) in formula (26). 

The expression, formula (10), for the total power taken by a 
network in terms of the impressed forces, gives, on breaking up 
the expression into its individual terms, a set of self-impedances 
and mutual impedances defined in accordance with definition 
(c). 

As an example of definition (d) we may take the important 
case where we are concerned only with two accessible circuits in 
a network and wish to replace the given network by a normal type 
having only the required three complex parameters. The normal 
networks which are ordinarily employed are the " T ", the " Ð," 
the transformer and the artificial line and for these the effective 
impedances are given in the following table, together with the 
simple circuit impedances which equal the driving point imped­
ance in either circuit Sq and Sr and the driving-driven point im­
pedance of a single circuit Sqr which would give the electro­
motive force -s- current ratio actually obtaining when the electro­
motive force is inserted in q (or r) and the current is measured in 
r (or q). Jq, Jr, Jqr are called the primary, secondary and 
mutual impedances as they correspond to the primary self-
inductance, secondary self-inductance, and mutual inductance 
following established scientific usage. This terminology is 
employed throughout this paper, as its extension to three or 
more circuits is obvious and symmetrical, and it seems to be the 
only logical system. Many electrical engineers, however, call 
Hq, Hrj Hqr1 (HQr being taken with inductive reactance) the 
primary impedance, secondary impedance and primary ad­
mittance, in case the assumed ratio of turns is 1 to 1. 

The table refers to the general case where the two circuits 
are not symmetrical, but the formulae are in such form as to 
facilitate reduction to the special case of symmetrical circuits. 
In this table different letters are employed for the various 
effective impedances thus somewhat reducing the multiplica­
tion of subscripts. 

ELIMINATION OF CONCEALED CIRCUITS 
In general we may divide a network into a concealed and an 

accessible part and it is convenient to eliminate the former from 
explicit appearance in the impedance determinant A when we 
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are concerned only with the effects which are produced in the 
accessible part of the network due to causes which are likewise 
confined to this part of the network. 

Elimination of a group of concealed circuits (ςr of any circuits 
which contain no impressed forces) from explicit appearance in A 
is ιquivalent to the substitution of new effective impedances 

A± 
Jqr~Aa 

between accessible circuits q and r where a stands for the pro­
duct of the original self-impedances of the accessible circuits. 

To prove this we notice that the set of Kirchhoff electromotive 
force equations for the concealed circuits taken alone give 

Y ^^i ( c = any concealed circuit 
Ic — j - ^ | Ir A a xc where \ r = any accessible circuit 

r ~Vr [ x = a n y c i rcu i t 

which substituted in the electromotive force equation for any 
accessible circuit q make the new coefficient of Ir in this equation 

JQr = Zqr + ~~^— ^^Zqc ^ 4 g g c = "^ I Zqr A /a_\<w+ ^^Zqc A S^\QC J 
c qr \qrJ c ^qr^ 

after setting x = q 

A*_ Α<χ_ 
= ~f~ = —j- = Jrq as A is symmetrical (12) 

Jqr is thus the new effective mutual impedance (or self-im­
pedance if q = r) between accessible circuits q and r. 

In the important casé where all but two of the circuits are 
eliminated, we have 

Jqq — Ann 

^1 qq-rr 

-At 
Jqr- A 

Slqq*r 
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And if but one circuit q is regarded as accessible, the driving 
point impedance of the network to an electromotive force in­
serted in that circuit, is 

Jlqq 

If we eliminate the circuits corresponding to all of the branch 
points and to an equal number of the branches which are con­
nected to these branch points but do not form any closed circuit 
among themselves, it may be shown that : Aa = 1; the new effec­
tive impedances are equal to sums and differences of the original 
impedances with coefficients which are 0, ± 1 , or ± 2 ; the circuits 
which are not eliminated are equal in number to the, degrees of 
freedom of the network. The case falls under that directly 
derived above by the use of circuital currents. 

If A a = 0 the method of elimination. fails, which shows that 
whenever fictitious branch point circuits are eliminated at least 
one branch connected to each branch point must be included 
and that the number of closed circuits formed by the branches 
must not be greater than the excess of eliminated branches over 
eliminated branch points. 

No change is made in the effective self- or mutual impedance 
of an accessible circuit q by the elimination of circuits which have 
no mutual impedance with circuit q. That is A a = Zqr A a since 

the added q row has but one term Zqr which differs from 
zero. 

A concealed branch of admittance Y which is free from mutual 
impedances may be eliminated by adding Y to each of the two self-
impedances and subtracting Y from the mutual impedance of the 
two fictitious circuits which replace the terminal branch points of 
the concealed branch. Any number of concealed branches may be 
eliminated in this way; the total self-impedance added to any 
fictitious circuit will equal the total conductance of the eliminated 
branches terminating at the corresponding branch point; the 
total mutual impedance subtracted between any two fictitious 
circuits will equal the total conductance eliminated between the 
corresponding branch points. 

To prove, let the concealed branch impedance beZ = l - ^ F = ^4a, 
then, if the self- and mutual-impedances of the fictitious circuits 
correspond to the terminals of this branch are originally Zi, Z2 
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and Z12, they become after the elimination of the concealed 
branch 

A« 
T - " 

A" 
T 22 

A« 
τ — n 

= Υ 
Ζν 

±i 
\zt 

= Υ\ 
IT* 

= Υ 
Ζ\ι 

Ti 

±i 
ζ 

Ti 

ζ 

±i 
ζ 

= Zy+Y 

= Ζ2+Υ 

= Æ 1 2 - Y 

Any concealed part of a network connected to the remainder of 
the network through a group of terminals {branch points) q, r, s, . . 
only (and having the impedance determinant Aa or Aί ac­
cording as the concealed part is taken alone or is taken together 
with the circuits corresponding to the group of accessible term­
inals) may be replaced by either of the following : 

(a) Self-impedances A«_ 4- Aa and mutual impedances 
QQ 

A«_ + A a added to the fictitious circuits corresponding to the 
ox 

group of terminals. 
(b) Branches, devoid of mutual impedance, connecting the 

group of terminals in pairs and having the admittances 
— Aa_-7- A a- These admittances we will call the equivalent 

or 
direct admittances of the network. 

(c) Branches radiating from a common concealed point, one 
to each of the terminals, with self-impedances ^4^.^-5-^4^ and 
mutual impedances Aίqr^-Aί. 

(d) Branches radiating from a common concealed point, 
one to each of the group of terminals, these branches being 
devoid of self-impedance and having mutual impedances 
- {Aί.qq+Aίrr- 2Aί.qr)+2Aί. 

{e) Branches connecting any one of the terminals q to each 
of the remaining accessible terminals r, s, . . . , the branch 
connected to terminal r having the self-impedance (Aί.qq 
+A ίjr — 2 A ί qr) 4- A ί and the mutual impedance (A ί qq 
+Aί.rs— Aί.qr— A ί.qs) -τ- A β to the branch connected to 
terminal s. 

Substitution (a) is a restatement of the results previously 
established for the case of concealed and accessible parts which 
are not connected the one to the other by mutual impedances. 
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To show that (ft) is equivalent to (a) apply the theorem for 
eliminating concealed branches which are devoid of mutual 
impedances to (b) ; the fictitious circuits corresponding to the 
group of terminals will thereby have their mutual impedances 
increased by A«_-7-Aa and their self-impedances increased by 

qr 

- -i-^AfL = -±-(Α*_-^?Αα)=Αα.+Αα 
Aa <^J qr A a \ qq <^MJ qr/ qq 

q±r 

since the complete summation with respect to r of the bordered 
determinants A*_ equals the determinant Aa bordered by the 

or 
row q and a column equal to the sum of all of the fictitious 
circuit columns r, and vanishes since terms +i and — i occur 
in pairs and cancel, making the column identically equal to 
zero. Substitution (ft) having been transformed into substitu­
tion (a) the two are mutually equivalent. 

Substitutions (c), (d) and (e) are readily shown to be mutually 
equivalent to each other and to the original network by showing 
that the impedance between any two terminals u and v with all 
others insulated is (Aί.Uu+Aί.w — 2Aί.uv)-r-Aί. 

The direct conductance between two terminals of any net­
work, as defined under (ft), is equal to one-half of the excess of 
the grounded conductance of the two terminals taken separately 
over their grounded conductance when taken together as a 
single terminal. By the grounded conductance of a terminal is 
understood the conductance between that terminal and ground 
with all of the other terminals grounded. As grounded con­
ductances can be readily measured with simple apparatus, this 
always affords one method of experimentally determining the 
direct conductances in any network. 

COMPLETE ELIMINATION OF EITHER MUTUAL IMPEDANCES OR 
SELF-IMPEDANCES 

It is shown by what has preceded that if we retain only a 
group of terminals as the accessible part, any network may be 
replaced either by a set of direct impedances connecting the 
terminals in pairs, or by a set of mutual impedances between 
branches radiating from a common point and terminating one 
at each of the terminals. In the first case all mutual impedances 
are avoided; in the second case all self-impedances are avoided. 
Applications to the simple transformer are of interest as showing 
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that in these substitutions an open circuit is taken care of either 
by parallel self-impedances which are equal but of opposite signs 
or by infinite mutual impedances differing by finite amounts. 
The substitutions show that a transformer Ju Ë , /12, is equiva­
lent to either 

(a) The six-branch network directly connecting the four 
terminals, the impedances of which are 

JiJ* J\ J'2 — J\2 J\ Jl — J\ Jx Ë - Ë 
Ë Jx J 12 J 12 

(16) 

between the primary terminals, the secondary terminals, each 
of the two pairs of correspondingly poled terminals of primary 
and secondary and each of the two pairs of non-corresponding 
terminals of primary and secondary, respectively. (In Figs. 6 
and 7 terminals 1-2, 3-4, 1-3, and 2-4, 1-4 and 2-3 respectively.) 

3 2 3 
FIG. 6 FIG. 7 FIG. 8 

Transformer and equivalent networks having four accessible terminals 

Or (b) the four-branch network connecting the four terminals 
to a concealed common point, the mutual impedances being 

2 2 4 · 1- 4 (16) 

between the branches (taken with their positive directions di­
verging from the common point) which terminate at the primary 
terminals, the secondary terminals, each of the two pairs of 
corresponding terminals of primary and secondary and each of 
the two pairs of non-corresponding terminals of primary and 
secondary, respectively. See Figs. 6 and 8. 

In certain cases a mutual impedance may be eliminated by 
properly augmenting the impedances of not more than four 
branches, without altering the arrangement of branches in any 
way or imposing any restriction as to whether they are concealed 
or accessible. These cases are all included under that of mutual 
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impedance between diagonally opposite branches of a generalized 
bridge, by which we will understand a network differing from the 
ordinary bridge only in having the four bridge corners replaced 
by four arbitrary networks; these corner networks may have 
mutual impedances between each other, but the only branches 
connecting them are to be the six branches corresponding to the 
simple bridge. Mutual impedance between diagonally opposite 
branches in the generalized bridge is replaceable by an equal amount 

FIG. 9 FIG. 10 
Generalized bridge with equivalent mutual and self impedances 

of self-impedance in each of the four bridge-arms, added to or sub­
tracted from the original self-impedance of the arm, according as 
the arm connects the branches having the mutual impedance with 
their positive directions concurrent or opposed. (Figs. 9 and 10.) 
An important special case is that in which one arm of the bridge 
is open-circuited and the network reduces to three branches 
connecting two arbitrary networks otherwise unconnected 
except possibly by mutual impedances. (Figs. 11 and 12.) 

The correctness of the substitution is shown by the fact that 

( S ) = GβS 
FIG. 11 FIG. 12 

Throe-branch connection with equivalent mutual and self impedances 

the impedance of every closed circuit is the same before and after 
the substitution» and that this is the most general case is proven 
by noticing: (1), that the generalized bridge becomes an unre­
stricted network by admitting any number of branches con­
necting the four corner networks in pairs; and (2), that with a 
single branch added to Figs. 9 and 10, it is impossible to keep 
the self-impedance of every closed circuit the same in the two 
cases for the added branch requires different increments accord­
ing to the circuit through which it is closed. 
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In the simple bridge circuit there are 15 possible mutual im­
pedances which may be eliminated by taking as the effective 
branch impedances the six permutations of 

Zio = Z | 2 + Zi2, 28 + Zi2,24+Zj2,31+Z|2,41+Zi3,i4+Z23,24 
+ Zl3,42 + Zu,32 (V?) 

where 1, 2, 3, 4 stand for the bridge corners. The condition for 
a balance of the bridge arms 12, 23, 34, 41 is therefore always 

Zi2 Z34 =Ziz Z41 (18) 

IMPEDANCE LOCI 
It is often of importance to know how the impedances of a 

network will vary if the self-impedances or mutual impedances 
of one or more of the branches of the network are varied over 
lines or areas in any physically possible manner. On account of 
the magnitude of this subject we shall touch on the simplest case 
only, namely that of the driving point impedance with a variable 
impedance added to one branch of the network. 

As the discriminant A and its minors are of the first degree 
in terms of each self-impedance which they contain, it fol­
lows that the effective impedances of the network, being equal 
to the quotient of two of these determinants, are bilinear 
functions of the individual impedances; thus the driving point 
impedance of a network at circuit q is connected with a self-
impedance Z inserted in any circuit r by a relation of the form 

a Z+b 
c Z+d (20) 

where a, b, c and d are constants. 
The property of the bilinear transformation which is of special 

importance to us is that it transforms circles into circles, that is, 
if Z be regarded as a variable and be made to traverse any circle 
whatsoever, the driving point impedance S will also describe 
a circle. In making this statement the straight line is included 
as the limit of a circle so that the loci of 5 and Z may be straight 
lines as well as circles. This property of the bilinear transforma­
tion, is discussed at length in the theory of analytic functions 
and need not be entered into here. 

We are especially concerned with the cases where the locus 
of Z is a straight line such as the axis of reals or the axis of imagi-
naries, because the first is a variation which it is convenient to 
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make use of in practical measurements and the second forms the 
extreme boundary realizable with physically possible values of 
the inserted impedance. We shall find it better to replace the 
constants a, b, c and d by others, such as the effective trans­
former impedances or the effective line constants, which have a 
physical significance. 

A network having effective transformer constants J\, J2, J\i 
effects the transformation of the half of the Z— plane on the positive 
side of the reactance axis into the area bounded by a circle with center 
at Zi and radius Rn 

Zi = J\ T , , Ri = T T , (21) 

the axis of reals going over into the circumference of a circle having 
its center at Zr and radius Rr: 

zr-A- j-zr-ji, Rr - | Ë _ Ë / | (22) 

where J2 is the conjugate of J2 and \Ji2
2\ the modulus of Ji2

2. 
The two circuits cut each other orthogonally at J\ and (J\ — J\2

2 -*- J2) 
which correspond to open and short-circuited secondary. The double 
points (effective line impedances—far end with sign reversed) are 

1 1 =I±^Il±hV{Ji+Ji)2_w (23) 
— A 2 J 

Proof: Close the secondary through the added impedance 
Z x, where x is a real variable, and the effective driving point 
impedance at the primary is 

ò _ Ë ( Ë + Æ * ) - Ë 2
2
 = j Ë22 Z'(Jt+Zx)-ZW+Z'x) 

J2+Zx x Jt+Zx J*Z'-Ji'Z 
(24) 

(r _ Ë2
? Z' \ / 7i22 Z \ / J*'+Z'x\ 

\Jl J2 Z' - J2' Zf ~*~ \J2 Zf - / , ' ZΜ \ J2+Zx ) (25) 

and in this form the expression obviously represents a circle, 
the center of which is the first term, the radius being the 
modulus of the last term, since the variable x occurs only in the 
last factor of the last term and variations in x change the angle 
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but not the modulus of this factor as its numerator is the con­
jugate of its denominator. If Z= — Zr = i, the inserted im­
pedance is pure imaginary and we obtain from (25) the constants 
for the boundary circle as given in (21). If Z = Z ' = 1, the added 
impedance is real and the effective driving point impedance 
falls on a circle with the constants as given in (22). To deter­
mine the double points substitute Zx = S = K in the first part of 

2000 PIO- 13 Ct SOI DAL OSCILLATIONS 
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FIG. 13.—Bilinear transformation for a line containing 6.201 wave 
lengths and having the attenuation constant 0.9123 and the line im­
pedances Ki = 1762 - 1 9 1 i and K2 = 1614 - 781i which maps the half 
plane on the positive side of the imaginary axis into the circle a d e e 
with the rectangular ruling mapping into the orthogonal system of circles. 

(24) and solve the resulting quadratic in K which gives the 
values (23). 

As a practical example of impedance loci, consider Fig. 13, 
which shows the driving point impedance of a transmission line 
for a frequency of 1,300 cycles per second, the line containing 
6.201 wave lengths, presenting an attenuation constant of 0.9123 
and having line impedances 2fi = 1762 — 191i and 2£2 = 1614 
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— 78H for transmission from the driving point to the receiving 
end and vice versa. The driving point impedances actually 
measured are the points marked by circles near a, &, c and d for 
which the far end of the line was closed through a short circuit, 
through 2,000 ohms, through an open circuit and through a 
capacity of 0.107 mf. respectively. As but three measurements 
are necessary in order to completely determine the three bi­
linear constants, it was necessary to adjust the four observations 
to the most probable bilinear transformation. I t will be seen 
that the corrections which it was necessary to apply to the ob­
servations were small, being in fact well within the errors of 
observation. The circle ad e e corresponds to the entire imagi­
nary axis of Z ; the arc abc corresponds to the entire positive axis 
of Z. Circles are also shown corresponding to values of Z 
having constant real components of 1,000, 2,000 and 3,000 ohms 
and constant imaginary components of ±1,000 and ±2,000 
ohms. The line impedances K\ and Ki are also shown. As 
the particular line under measurement effects the transforma­
tion of the rectangular network shown in Fig. 13 into the ortho­
gonal system of circles, the diagram shows that the driving point 
impedance has the resistance limits 1,270 to 2,640 ohms and the 
reactance limits — 1,070 to +300 ohms. The diagram as it 
stands is sufficiently complete to permit of reading off approxi­
mately the value of the driving point impedance for any value 
of the impedance Z bridged at the receiving end of the line. 

The following construction will be required below and may 
be proven here. 

The effective joint impedance S of two impedances Z\, Z2 in 
parallel coincides with the intersection of the circles which are 
tangent to these impedances at the origin and have the individual 
impedances as chords. This construction follows at once from 
the circular locus of 5 for variable modulus of either Zx or Z2 
and the fact that if one of the parallel impedances Z\ vanishes 
or the other impedance Z2 becomes infinite the joint impedance 
is equal to Zi. This construction is employed in Fig. 15 for 
obtaining 5 from Z\ and Z2 or vice versa. 

DIVISION OF POWER BETWEEN THE RESISTANCES AND REAC­
TANCES OF A NETWORK 

The total power taken by a network is the sum of the powers 
taken by the individual self-impedances and mutual impedances, 
and to determine the division of this power between parts of the 
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network it is merely necessary to find the summations for each 
part separately. As the total power and all of its components 
are directly proportional to the square of the current entering 
the network at the driving point, it is more convenient to con­
sider, as the immediate object of discussion, the effective im­
pedances which are defined as the ratios of the powers to the 
driving current squared. Accordingly we shall discuss the effec­
tive impedances Sy £/, V i which correspond respectively to the 
total powers taken by the entire network, by the true resistances 
alone, and by the reactances alone. From this definition of 
these impedances it follows that 

i = l k=l i = l i = U = ; + l 

n n 

u = 2 2^* ~i7 where Zjk = Rjk + i Xjk 
j=l fc=l 

*-<22*·^ 
i = l k=l 

The impedance U corresponding to the power taken by the 
resistances in the general passive network may have any argument, 
and any modulus which is not greater than the effective resistance 
of the network. To prove: 

Consider an ideal line of zero attenuation containing 5 wave 
lengths, closed at the far end through a resistance equal in value 
to the line impedance K, with an impedance (R — K) +Bi in 
series at the sending end so as to make the total impedance at the 
sending end equal to R+Bi. A current / flowing at the sending 
end gives rise to a current / eis (— 2 π s) at the receiving end 
so that the total power taken by the resistances is 

P=(R- K) P+K P eis ( - 4 7Ã s) 
Therefore 

U=(R- K)+K eis ( - 4 î i ) 

an impedance which may obviously assume any argument and 
any modulus not exceeding R with positive real values of K> 
(R- K), and s. 

The modulus of U can under no circumstances be greater 
than the effective resistance of the network for if this were the 
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case the correlated sinusoidal oscillation would have, at some 
part of each oscillation, a negative total consumption of power 
by the resistances which is obviously impossible when the 
network contains neither sources of power nor so-called negative 
resistances, which are excluded throughout this discussion. 

In Fig. 14 5 and R represent the effective driving point im­
pedance and the effective driving point resistance of the net­
work, while U and Vi show a possible resolution of the im­
pedance S into components corresponding to the powers taken 
by the true resistances and the reactances respectively. The 
circle Rb cd drawn about the origin with 0 R as a radius is the 
maximum possible locus of U. If U falls at point b or d the power 
taken by the reactances has its maximum or its minimum value. 

If ά falls at R the power taken by the 
reactances is 90 degrees ahead of the 
power taken by the resistances and this 
case corresponds to the series arrange­
ment of a resistance and a reactance. 
(This is for positive reactance; with 
negative reactance the lead becomes a 
90 degree lag.) At point c the relative 
phases are reversed, the resistances tak­
ing power 90 degrees in advance of that 
taken by the reactances; this case, as 
follows from the formulae deduced below 
for parallel circuits, may be realized 
theoretically by the association of a 
pure resistance and a pure positive re­
actance in parallel. The point of special 

interest is the origin O; if U vanishes the cisoidal powers taken by 
the various resistances cancel each other in the summation for the 
resultant ; in the correlated sinusoidal oscillation the power taken 
by the resistances is constant, that is the total generation of heat 
in the network does not fluctuate during an oscillation. This 
would seem to be a property which might have practical applica­
tion. 

If hy h, are the maximum and minimum driving point impe­
dance arguments obtainable from the elements employed in a net-
work of driving point impedance S = R+Xi= \S\cis σ the im­
pedance U must lie in the lenticular area common to the two circle** 
which intersect at the effective resistance of the network (R) and are 
centered at the projections of S on lines drawn through the origin 
at the angles (ó — λι) and (ó — λ2). 

b 
FIG. 14.—Resolution 

of the driving point im­
pedance 5 into the im­
pedances corresponding 
to the power taken by 
the resistances ( U) and 
by the reactances ( V i) ; 
Rb c is the extreme 
boundary for U. 
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Multiply each impedance Zjk in the network by eis (~^*-^ ). 

As this leaves the current ratios unchanged the new value of U 
will be 

^= 2 2iZjkl cos (ß -A + ó ^ ) ¹~* 
= i cos Ë 2 2 'Zife' c i s ó '* º ^ 

- i eis Ë 2 2 'Zi*' COS ó '* ~ / ^ 

= i S cos Ë — i U eis Ë 

Therefore U=i U eis ( - Ë) + 5 cos λ cis ( - Ë) 

which expresses the actual value of U in terms of the modified 
value U. We may make λ = λι without introducing any re­
sultant negative resistance in the network, for the multiplication 

of each impedance by cis [ ̂  — λ I has increased the argument 

of each simple or combination impedance by j r · - ^ ) , which 

raises the maximum arguments from λι to 1« - H ^ i ) . The 

extreme possible boundary limit for U will then be the circle 
of radius equal to the new effective resistance or 

Extreme limit for U= \S\ cos \σ+κ~λι) °is M where μ is 
any real angle 

= S sin (λι — σ) cis (ì — ó) 

Substituting this in the above equation, we obtain as a necessary 
condition 

Limit for U= \S\ cos λχ cis (ó — λι) +i\S\ sin (λ\ — ó) cis (ì - λι) 

Since the only variable is the unrestricted real quantity μ this 
locus for U is the circle of which the center is the first term and 
the radius the modulus of the second term. The first term is 
the point at the foot of the perpendicular let fall from the ex­
tremity of S on the line cis (ó — ΐL) and the distance from this. 
point.to the extremity of R is | | 5 | cos ó — \S\ cos λ1 cis (ó — λι)\ 
= |5||cis— Ai||cos ó cis λχ — cos λχ cis ó ^ É ^ sin (λι— ó)|, the 
modulus of the second term. 
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The corresponding proof for the minimum limit is made by 

substituting — Irt" — Ë21 for ·(«♦ — λ) That the lenticular area 

thus defined is a sufficient as well as necessary restriction is 
proven by the properties of parallel circuits discussed below. 

We may note that U cannot vanish unless there is a range 
of at least 90 degrees in the impedances of the elements entering 
the network. 

All possible distributions of power between the resistances and 
the reactances, with any given total driving point impedance may be 
obtained from two reactive resistances in parallel, and it will now 
be of interest to examine this case in detail. We will assume 
that the impedances Zi, Z2, when connected in parallel are to 
have a given total effective impedance S and a given impedance 
U corresponding to the total power taken by the resistances. 
These conditions give 

5 = ZXZ 2 

Zx+Zt 

Z1+Z1' / Z2 A* Z ,+Z» / / Zy \* 
2 XZt+ZjT 2 yZi+Zj 

frs'-.zsw +.s±sr_ (27) Zi'XZS-S') ' 2 

where the first expression for U is in terms of thé resistances and 
current ratios and the second expression is found by substituting 
for Zi its value in terms of Z\ arid 5. 

Let F = | F | c i s ( p = ^ - ^ ^ - Ì 
I 

5 = | 5 | Ü 3 ó W28) 

Z = \Z\cisd J 

and put the last expression for U in the form 

2 F-Z* (Z* - S') = (Z S' - Z' S)1 = - 4|Z* ^Isin« (θ - ó) 
where subscripts are omitted as the equation applies equally toZi 
and Zi. Taking the imaginary part of this equation before and 



816 CAMPBELL: CISOIDAL OSCILLATIONS [April 25 

after multiplying by eis (— θ — φ) we have, after dropping the 
common factors 2\F Z*\i and 2|Z2 5|sin (Θ — σ) i, 

\Z\sin (θ+φ) - \S\sin (2 θ - σ + φ) = 0 

- |F | = 2|S|sin(0- a)sin(0+<p) = |S|[(cos(a+y>)-cos(20-a+<p)] 

therefore Z = \S\ ύη{2θΓ°\ψ) eis Θ (29) 

sin (θ+φ) 

with values of Θ given by 

cos ( 2 0 - a+<p)=cos(a+(p) + \F+S\ 
which is the required solution for ZL and Z2. 

The graphical construction for 
determining S and U when Z\ 
and Z2 are given, or vice versa, are 
sufficiently simple to be of assist­
ance. The construction rules which 
are readily deducible from the pre­
ceding work are as follows: 

Given Z\ and Z2 to find S and U, 
Fig. 15. Find the impedance 5 of 
Zi and Z2 in parallel and draw the 
circle having 5 as a diameter, on F l G 15._Graphical construc-
th lS Circle l o c a t e p o i n t s dx a n d tion for determining the effective 
di SO t h a t a r c Sdx — ^XC C\ R, a n d driving point impedance (S) and 
a r c S d 2 = a r c C2R w h e r e ch C2 a n d the effective impedance corre-
R are the intersections of the circle s P o n d i n s t o the power taken by 

. , ry r, j ,- . , . the resistances (U) for two im-
with Zu Z2, and the resistance axis, , ~ , Ύ . n , 

Li ' ' pedances Ζγ and Z2 in parallel. 
using d\ and d2 as centers strike 
circles passing through point R. The other intersection of the 
circles is the effective impedance U. 

Given S and U to find Z\ and Z2. Find the intersections d\ 
and d2 of the circle having 5 as a diameter and the normal right 
line bisecting U R, lay off arc C\ R = arc S du and arc c2i? = arc 
S d2. Then O d and O c2 are the direction lines for Zi, Z2 the 
magnitude of which are found by the intersection therewith of 
the circles tangent to O Ci and 0 c2 which have 0 5 a s a chord. 

The vanishing of U requires a difference of 90 degrees in the 
two impedances Zx and Z2; if the driving point impedance S is 
to be pure resistance ( = R) we have the important case where 
the parallel impedances are (R±Ri). 
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F R E E OSCILLATIONS 
The characteristic feature of free oscillations is that, through­

out the part of the network over which the oscillation extends, 
the driving point impedance is equal to zero. This follows 
from the fact that as the driving point impedance is equal to the 
impressed electromotive force divided by the current, it vanishes 
when the electromotive force vanishes, provided the current 
does not vanish. The criterion for free oscillations is therefore 

A=0 (30) 

The solution of this equation contains all of the possible values of 
the time coefficient p. Each possible oscillation is aperiodic or 
not according as p is pure imaginary or not ; p cannot be real for 
any actual system, since energy must be dissipated in any 
oscillation which may occur in such a system. 

In present day practical applications, complex or imaginary 
values of p occur, as a rule, only for free vibrations; but there is 
no inherent reason why such vibrations should not arise as forced 
vibrations, for that requires only that an alternator be used 
which gives an electromotive force of constant period and 
logarithmically decreasing amplitude. This condition is ap­
proximately realized by a freely vibrating system which is loosely 
coupled to the network under consideration. 

As an illustration of the application of the method to free 
oscillations, determine the time coefficients {i.e., the free periods 
and associated damping constants) for two coupled circuits of 
impedances Zi, Z2, Zi 2. For this case 

A = = ZXZ2- Z12
2 = 0 

Z\ Zi2| 

Zi2 Z2 I 

= [(2 τi+p i) (2 6S+P i)+pS] [(2 ςt+p i) (2 δ2'+ρ i)+pf\ 

+k* p* (2 τi'+ρ i) (2 Τ2'+p i) (31) 

u S R X> G j . X u M where 0 = n r , o = 0 „ , p = — 7 = , k= -—. , 

taken with subscripts 1 and 2 to correspond with the circuits. 
For small damping constants ?, δ' (31) may be developed into a 
series of which the first terms are 
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pi = pai — 
δι(ρ<Η>ϊ)+δι'(ρΜΐ-#)-Ρί) +h{W-Pl) ±h'{p<Ki-w)-pjV 

2p(?{l-~k2)-px*-pi
i + -

= = = = = (32) 
. ... „ / ρΐ+pκ ± V(fti2 - PW+ι k* Pi* p2 where p0 = \ r- ^ 9 7 i ~ P i 2. (º - k2) 

2 Ë.2 
(33) 

are the time coefficients which would obtain if the circuits were 
free from all dissipati ve losses. 

In the special case of two identical circuits (Zi = Z2 = Z) the 
determinantal equation becomes A = (Z-f-Zi2) (Z — Zi2) = 0 

orR+{L±M)Pi+-φ-^fr0 

whence**- - ( _ ^ _ + ^ ) 

± (L±Jlf) C V 
R 

(34) 2 (L±M) 2 C / 

without any restrictions as to the values R, L, M, G and C. 

INFINITE NUMBER OF CIRCUITS—EDDY CURRENTS. 

WHen the number of circuits is increased indefinitely the de­
terminant A becomes of infinite order. The particular applica­
tion which at once suggests itself is that of eddy currents in a 
cylindrical core. Consider the core of radius a as being made up 
of a large number n of concentric hollow tubes of thickness a + n 
and radii ga-rw, (g = l, 2, . . . n) and take as the driving" 
winding another tube of radius (n+\) a-μ-n which has infinite 
conductivity. Then the impedance for tubes q and r per unit 
of length is 

/ „2 \ l£q<r£n+l 
ZQr = ZrQ = 2TT plςqrq+2zi^T-) « _ (lif(Z = r < n + l (35) 

V n ' 0qr~ ( 0 in other cases. 

with z = *—£— = -^-fr~=-^--—, R and L being the resistance 
p R 4.7Ã p 

(ρ-τ-πα2) and inductance 4 μ π2 a2 of. the core, per. unit length 



1911] CAMPBELL: CISOIDAL OSCILLATIONS 819 

The driving point impedance of the winding if x = 2zi+n* is 

\l+x x x .· . . x x 

22x 22x ! x 2+22x 22x 

; x 22x 3+32x 

n+ij n+i 

x 22x 32JC 

x 22x 32x 

32x 32x 

n+n2x n2x 

n2x (n+l)2x 

x 2+2 2 JC 22* . . . 22x 

x 22x 3 + 3 2 * . . . d2x 

x 22x 

n + l 

32x . . . n+n2x 

�^+»'2($'CΟ=ΞA + !-£)! 
= 2 ô ô ñ * = 1 

"2(?T (rc+fc)! 
( Ï ! ) * ( n - * ) l 

k=0 

the transformation of the determinants into series of powers of 
x-7-2 = zi-r-w2 is proven to be correct by its, being correct forn = 1 
and 2 and satisfying the difference equations for the numerator 
(Nn) and the consecutive values of the denominator (D«-2, Dn.-i> 
Dn and Dn+i) 

Nn = Dn+!- (n+l)Dn 

Dn = (2n- 1) ( l + x ) Z V i - (n - 1)2£>W-* 

which are obtained by subtracting the next to the last rows and 
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columns from the last rows and columns and expanding accord­
ing to the last rows and columns. For n = infinite, 

(zi)k 

5 = 2 ð ñ 

= 2ðñ-

= 2ôôñ 

X1 __ ̂ z *i_ 
2A (k-μ) ! -1) \kl 
k = \ 

(zi)' 
{k\y 

k=0 

2zi+(ziy+^^-+ . . 
1 . . , · , ( * *)2+(Z* ) 3 + 

- V- Aizjy- 4 
Jo V - liz 

IZ 

= 4 7Ã p 2 —j-^ log Ë V - 4 i Z 

= 4 π p zi 1 1 + 
( 

J2 V — 4i: 
Jo \ / _ 4 i % ) 

(36) 

which are the well known results expressed in Bessel's functions, 
To make the formula perfectly general for any driving winding it is 
necessary only to multiply by the length of the core and the 
square of the total number of turns in the winding and to add the 
impedance of the winding which arises externally to the core. 

This example shows that certain infinite systems of circuits 
which are ordinarily solved by partial differential equations 
may be handled by the general determinantal solution, but of 
course when transcendental functions are involved, as in the 
case of eddy currents, the algebraical reduction may introduce 
some complexity. 

As a further example of infinite systems of circuits take the 
eddy currents in transformer plates gives the following results: 

For a plate of thickness 2a, width w and axial length / divided 
into a large number of 2n of sheets of equal thickness and sur­
rounded by a close fitting driving winding of a single turn and 
zero resistance: 
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_ μΐρη 
Liqr — Zsrq — (̂ +À,- *v) 5<7r = 

v Ύ 2 pwn /χ . A . g \ π a2 μ p . Ä 
Zqr = Zrq= j — 10^+4 2 ι - ^ 1, 2= — g, r and òflr as 

above and the driving point impedance at limit n = infinite is 

2 o isϋ 
S = a l v T z î tanh V Ï T Ï (37) 

SKIN EFFECT 
For a cylindrical conductor of radius a, length Z and steady 

current resistance R with close fitting return shell of zero re­
sistance, the conductor being divided into n concentric tubes of 
equal cross section with circuit q comprising adjacent tubes 
q and q + 1 : 

2, if q = r<n 
1, if q = r = n 

- l , i f i = r ± l 
0, in other cases 

with - **JUL = M|Ì ä í = j 1^;;<_;_„ 
P ( 0, in other cases 

and the driving point impedance at limit n = infinite is 

S=--*ίl±£_ -W£T7j (38) 
v — 4 i s ·/1 v — 4 i s 

Details of Proof. Regard each hollow cylindrical tube as 
concentrated on its mean diameter, while retaining its actual 
resistance, p n Ι+π a2. This resistance with sign changed will 
then be the mutual impedance between any two adjacent cir­
cuits, as each tube carries the difference between the currents 
in the two adjacent circuits of which it forms a common part; 
no other mutual impedances occur, as no other current products 
enter the expression for the total energy. The self-impedance 
of the qth circuit is made up of twice this resistance, together 
with the inductance Z-s- q\ the inductance being found by the single 
turn solenoid formula 4ð cross-section -r-length, the cross section 
being a l-7-2\/^~n and the length {i.e., mean circumference) 
being 2 7ra\/^Z^~ For the outermost circuit (q = n) this im­
pedance is to be divided by two, since its return circuit is of 
zero resistance and zero thickness. The impedances Zqr are 
thus, as stated above. After removing the factor μρΐη +ζfrom 
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each element of determinants A and Ann and placing x = z i-r-n, 
we have 

Ann n = oo z 

2+Y - 1 0 . . . 0 0 

-1 2+1 -1 . . . 0 0 

0 -1 2+1 ... 0 0 

0 0 0 ... 2+—^- -1 
n— 1 

0 0 0 . . . -1 1+j^-
2 n 

2+Y - 1 0 . . . 0 0 

-1 2+1 -1 . . . 0 0 

0 -1 2+1 ... 0 0 

0 0 0 ... 2 + — ^ -1 • n — 2 

0 0 0 ... -1 2+ -t 
n— 1 

Jpl 

km ^sJ 
X = QO ^ 

(2n-k) (n - l ) l 
2(kl)2(n-k)\ 

k=0 
n-l 

lim É ^ 
x = oon^Jkl(k + l)l (n-k-l)\ 

k=0 
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the correctness of the series expansions for the determinants is 
readily proven for n = 1 and 2 directly from the determinants and 
then extended step by step to any value of n by expanding the 
determinants according to the terms in the last row and column 
so as to obtain expressions for the denominator (Dn) and the 
numerator (Nn) in terms of the denominator with different 
values of n, viz: 

which are readily shown, by substituting the above series ex­
pressions, to be identically satisfied for all values of n. 

Finally replacing x by its value zi-τ-η and passing to the limit, 

00 

X ^ (zi)k 

7 2A (kiy 
s== ίpl k=o 

z °° 
\ i (zi)k 

ZA k\(k+\)\ 
fc=0 

which is identically formula (38), as the numerator is the series 
for Jo V— 4 i z a n d the denominator is the series for 
2 JiV— 4iz "*" V— 4J z. 

SUMMARY 

1. The complex exponential function is shown to be, not a 
symbolic vector representation of the sinusoidal function, but a 
scalar function of fundamental importance in its own right, and 
enjoying algebraical power and energy relations as important 
as those of real functions. In order to emphasize the basic and 
distinctive character of the complex exponential function, it is 
given the name " cisoidal oscillation." 

2. The correlation between sinusoidal oscillations and cisoidal 
oscillations is reduced to a few simple rules which cover power 
as well as currents and electromotive forces. 
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3. The general law of distribution of currents in any invariable 
network is shown to be that of stationary dissipation of power. 

4. The law of distribution of cisoidal currents in any invariable 
network is reduced to that of stationary total power, or to the 
equivalent condition of stationary driving point impedance or 
admittance. 

5. The cisoidal power is employed as the most convenient 
means for investigating the division of the instantaneous power 
between the resistances and reactances of a network. 

0. The general solution for cisoidal oscillations in any in­
variable network is given in determinantal form and it is shown 
how the various impedances of any particular network may be 
written down at once and how the elimination of concealed cir­
cuits, mutual impedances or self-impedances may be accom­
plished. Applications to impedance loci, free oscillations and 
infinite systems of circuits are also given. 


