“O Check List weir tte af ey | J . Fr. NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (5): 735-746 a https://doi.org/10.15560/15.5.735 PENSUFT. Systematics, taxonomy, and distribution of species of Myriogenospora G.F. Atk. (Clavicipitaceae, Hypocreales, Ascomycota) Armando J. Cruz-Laufer'*, Melissa Mardones?:*, Meike Piepenbring? 1 UHasselt — Hasselt University, Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium. 2 Department of Mycology, Goethe University Frankfurt am Main, Biologicum, Max-von- Laue-Str. 13, 60438 Frankfurt am Main, Germany. 3 Escuela de Biologia, Universidad de Costa Rica, San Pedro, 11501 San José, Costa Rica. Corresponding author: Meike Piepenbring, piepenbring@bio.uni-frankfurt.de Abstract Based on new specimens of Myriogenospora spp. from Costa Rica and Panama, we present morphological analyses, systematic conclusions, additions to host ranges, and geographical distribution data for the two species currently clas- sified in this genus. Myriogenospora atramentosa (Berk. & M.A. Curtis) Diehl differs from Myriogenospora linearis (Rehm) J.F. White & Glenn in the ascus and part-spore morphology, a different position in the molecular phylogeny, and the host range. We conclude that the two species are not congeneric and propose that M. Jinearis should be called Balansia linearis (Rehm) Diehl. Keywords Balansia, Clavicipitaceae, Costa Rica, grass epibionts, Panama, phylogeny, Poaceae. Academic editor: Panu Kunttu | Received 9 May 2019 | Accepted 15 August 2019 | Published 6 September 2019 Citation: Cruz-Laufer AJ, Mardones M, Piepenbring M (2019) Systematics, taxonomy, and distribution of species of Myriogenospora G.F. Atk. (Clavicipitaceae, Hypocreales, Ascomycota). Check List 15 (5): 735-746. https://do1.org/10.15560/15.5.735 Introduction and some of their metabolites could have medicinal and agricultural applications (Tan and Zou 2001). However, few studies have contributed to our knowledge on the distribution and systematics of balansioid fungi in recent years. Therefore, many species concepts rely only on morphological observations with DNA sequence data being incomplete or entirely missing. The genus Myriogenospora G.F. Atk. was established The wide host range and diverse host interactions of clavicipitaceous fungi have led to a series of studies on the ecology (Saikkonen et al. 2006), evolution (Kepler et al. 2012b), toxicology (Bacon et al. 1975; Kallen- bach 2015), and biotechnological application (Kusari et al. 2014) of species of Clavicipitaceae (Hypocreales, Ascomycota). To address these topics, knowledge on the ; morphology, systematics, taxonomy, host range, and geo- by Atkinson (1894) and includes M. atramentosa (Berk. graphical distribution is important. Several studies have ® M.A. Curtis) Diehl (type species, syn. M. paspali G.F. paid special attention to plant-infecting species of Clavi- Atk.) and M. /inearis (Rehm) J.F. White & Glenn accord- cipitaceae including those classified in the tribe Balan- ing to the most recent taxonomic revision by White and sieae or the Ephelis clade (Kuldau et al. 1997). These Glenn (1994). Myriogenospora spp. are characterized by species can increase plant resistance against herbivory — perithecia arranged in lines embedded in linear stromata (Clay et al. 1985, 1989) and drought (Ren and Clay 2009), _ parallel to and mostly surrounded by grass leaf blades Copyright Cruz-Laufer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unre- stricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 736 (Poaceae). The asci are fusiform and, as the genus name indicates, they include numerous part-spores. These part-spores are small, fusoid, and result from ascospore fragmentation and bipolar growth with secondary spore production (White and Glenn 1994). Using recently collected samples from both species of Myriogenospora, we reassess the geographical distri- bution, host range, morphological descriptions, and sys- tematic relationships of M. atramentosa and M. linearis. Methods During field sampling of plant-parasitic microfungi in southern Central America, we collected several speci- mens of Myriogenospora spp. in Costa Rica and Panama between 1992 and 2015. Collection sites with ecological details are mentioned together with the records below. Dried specimens were deposited in the following her- baria: specimens collected in Costa Rica were deposited in the Herbario de la Universidad de Costa Rica (USJ), and specimens from Panama in the Herbario de la Uni- versidad de Panama (PMA) and the Herbario de la Uni- versidad de Chiriqui (UCH). All the specimens were also deposited in the Botanische Staatssammlung, Munchen (M), Germany. We examined the morphology of Myriogenospora spp. using dry material in 10% KOH with or without aniline blue aqueous solution. Using a freezing micro- tome Leica (CM 1510-1), we obtained microscopic, about 30 um thick sections to image the stroma morphology. Imaging and measurements were done using a camera Nikon DS-Fi2 adapted to the microscope and operated by the imaging software NIS-Elements D 2.2. The measure- ments indicate the mean value + the standard deviation of n measurements (n > 20) and extreme values in parenthe- ses. Line drawings were traced using a drawing tube and edited with Photoshop CS5 (Adobe, San Jose, California). DNA extraction and PCR protocols followed the pro- cedure described by Mardones et al. (2017). Three par- tial nuclear gene regions (two ribosomal loci and one protein-coding gene) were amplified and sequenced: a fragment of the large subunit nuclear ribosomal DNA (nrLSU) with primers NL1 and NL4 (O’Donnell 1993), the complete internal transcribed spacer region of ribo- somal DNA (ITS1-5.8S-ITS2) with primers ITS5S and ITS4 (White et al. 1990), and a fragment of the transla- tion elongation factor 1 (TEF1) with primers EF1-983f (Carbone and Kohn 1999) and EF1-2218r (Rehner and Buckley 2005). For phylogenetic analyses of Myriogenospora spp. and other Clavicipitaceae, we compiled a three-locus concatenated alignment (nrLSU, ITS, TEF1) including 33 species. These analyses were rooted using Zolypo- cladium capitatum (Holmsk.) C.A. Quandt, Kepler & Spatafora and T. japonicum (Lloyd) CA Quandt, Kepler & Spatafora (Ophiocordycipitaceae) as outgroups. The taxa of Clavicipitaceae used in the analyses as well as the newly generated sequences deposited in GenBank are Check List 15 (5) listed in Table 1 together with their locality, host plant, voucher numbers, and GenBank accession numbers. The alignments were deposited in TreeBASE (http://www. treebase.org/) under accession number 24171. Phylogenetic analyses were conducted applying max- imum likelihood (ML) and Bayesian methods and fol- lowed the procedures outlined by Mardones et al. (2017). Data were partitioned by gene and by codon position in the case of the protein-coding sequences. The HKY + G model was applied to ITS, GTR + I+ G model to nrLSU, and TIM + I + G model to TEF1. Bayesian posterior probabilities (BPP) >0.95 and Bootstrap values (BS) =70 were considered to be significant. Results Balansia linearis (Rehm) Diehl, Agric. Monogr. No. 4: 47 (1950) Figures 1, 2, 3A Material examined. Costa Rica * Cartago Province, Cerro de la Muerte, Cerro de la Asuncion, Pan-Ameri- can Highway km 89, near the entrance of the Tapanti National Park; alt. about 3100 m a.s.1.; 10 Jan. 2015; M. Piepenbring, O. Caceres, M. Eichenlaub, M. Mardones leg.; on leaves of Chusquea subtessellata Hitchc. (det. M. Piepenbring) (MP 5242; M 141351; USJ109414). Identification. Infected shoots of the host plant without flowers and with all leaves presenting stromata. Stromata wrapped in host leaf blades except for a linear exposed part containing perithecia, epibiotic, one to several cen- timeters long, hyaline except for a black outer surface. Leaf blades held in rolled position (supervolute ptyxis) by a plectenchyma consisting of fungal cells. Perithe- cia immersed, arranged in I—2 rows, pyriform or bottle- shaped, (475—)505—590(—625) x (225—)265-—375(—405) um. Ostioles appear as warts on the black outer stroma surface. Asci cylindrical, unitunicate, containing numer- ous part-spores, (150—)170—250(—280) x (5.5—)6.5—9.5(— 11) um (difficult to measure because the asci intermingle and easily break), with a truncate, light refractive body perforated by a central pore at the tip of each ascus. Part- spores cylindrical, containing guttules, (17—)21—27(-28) x ],0-1.5 um, hyaline, smooth. No part-spore initials resulting from ascospores fragmentation followed by reinitiated bipolar growth were observed. Synonyms. Ophiodothis linearis Rehm. Linearistroma lineare (Rehm) Hohn. Myriogenospora linearis (Rehm) J.F. White & Glenn. Type. Brazil, Campo Bello, on Chusquea sp., 1894, E. Ule 2105 (type, n.v., not in BPI). For heterotypic synonyms see White and Glenn (1994). Known distribution. Until now, Balansia linearis (M. linearis) is only known from Brazil (Pazschke 1896). Here, we report this species for the first time for Costa Rica and for the first time outside of Brazil (Fig. 3A). 737 ; *JEPWD ae (VLOZ) “Je 39 |PseyrsS L9S689dy SZ6000LOADAL SZ6000LOADAL SvL00C DLV “4°F (XIeUD) DSO/JIA ssosBDUIDIDD \adoin3 SUYM ‘Jf U0IDg go/YrIdz ; “UQUIS a (866L) ‘18 38 YNS 089ZS5N (-xypIW) DIDsNIgo sjoydouayds vsn SUYM ‘Jf SUDI|JADLUD aojyridz “ye 0 1es ‘quebbed a NPIS Oo}! ‘4° SUD]JIDLUD aojyrid (yo6l) "ey 1esL_ = 79S689d» ZvLZO1 Ls4 ‘ong (ayer) syDUIAaAY Suso’By vsn UUM “Af SUDI[DLUD go] Yy>!dq (9002) ‘Je 39 EWeAOYOA LEOVLLaV 7859 SAVIN UMOUHU/) ueder "uUaH DIJUOdDI sjaydy (LOOZ) ‘Je 39 UBAIINS S67Svc4dV umMouUyU) ‘ds plD1aS ed1y e1SOD Ja|JOW Saplojnoununis sdadiAvd]D (£002) : o : ye 18 e1ojeqeds (7661) JeJ@nepiny — !ZECZSOG L£Z7189N Z68EL DDLV 7 winysiisip uinjpdsbd Ajey EH “Df 7B Suanais ‘4 1/Ddspd sdaaiav/} dope eet _-ezerzeoa ZObLLN 61097 DD LV umouxun umouxun $3|9N0] S/UUO4ISNY Sda>/AD/D -ejeds ‘(G661) sjanuues pue Jauyay ; d : ‘ye qya ueayyn ‘ds winybio Our III (LOOZ) 124 INS v6cSvTAV 97908 Idd VaSN YDIOS Vvsn 2q 9 apUeW “iapar4 DUDIYD sdasIAD|) . IYOd' WY SUYM “AT? (7102) "12 3 [P4eY>S £VS689d» sSlo@ (AdNy 79 “ULL) DYDLJOINa D/JassoN See aalt Ke|> ‘Appay ‘Ad (JY4a!q) sisuaxa] DISuD|Dg (Z66L) ‘Je 39 Nepjny vcLs9on €6rg “AS9Q A/D/NIIDD WINDIUD_d SPIUOWY |Yaiq (‘JUOW) sUDjNbuDAjs DIsuD]Dg vOZO99IW vE6L dW snwed "y (1) psnyad pojyrouyi0g OD1xa/\) ‘ds pisuvjog ‘ye Jonepjn soqeX'O'H (7) winxp] wniyJUubwspb 142! Gun} (£661) ‘12 38 Nepiny 7Z189N 7706 DILV JEX'O'H (7) WinxD] win YD vsn WR DIN9g) SjuMoJan)njd DIsUDIDg 2 (VLOZ) “Je 38 |PseydS 67S689dy vv9000LOSZ4f vv9000LOSZ4L 6vcd “] SAZDUIYIa sNsYyIUa) SPIHOWY IY9lq DJ5a1qg0 DIsubjbg a ' ulveW TL’? aye S (£661) ‘Je 38 Nepiny 6LL89N 7sza YUH (266n|4) snip I4ny sndouoxy VSN 3) oyu a'r (Bads) suosu61u pisunjog = (wus! S ZLZO9OMW 66LO99NW 77S dW “DYDUH OID]/assajqns banbsnyD R14 eISOD = "BOUYM ‘4'f (WYaY) sUDaUI/ DIodsouab 3 -OLIAW) |Yalq (WiYyay) sUbaul DIsuDjDg = ‘ye Ja Nepjn AIBERS YY ‘4°D (Dad) UO/Axodhy visuvjo = (£661) 12 38 Nepiny vLL89On ZLLd 9 wid0y (-9) BIDIds DIUOYIUDG vsn AV “A'D 02d) Uo/AxodKy vsubjog 5 au?) OLO68VAV SLL68VAV SL86v0N ®/7-96D4V ‘ds wind|ubd ysn [Ya!q (a||QW) ouDIsbuyuuay bIsubjog is ‘Je 18 19)day ‘(pO0Z) ‘Ie 38 Anqajse> ia ile ie 7 (2661) ‘Je 38 Nepiny LZL89N ELLE “4°Y (7) SN2/pul snjoqosods Sed JaWY [Yai (eseaM) 20/Y2/Ida vIsULjDg 2 (27102) me) ecl|- 9e9DeO sedlowW JIq (98S90 20/YJIda DISUDID c “1 18 1a|day (2002) ‘|e 18 Buns €vZ89v44 8V86r0NF S1-96 DAV d perl Vv IYyald ( M) 20/42! /sub[Dg 0 v89r0LNW SOZO99NWI Q6E7S dW "MS Winsoyid WiNdJUbd eD1y &1SOD ‘UUaH Daplorsip bIsubjDg e (2661) ‘Je 38 Nepiny 8LL89N SZOL "XYDIW SUadJA sndadAD vsn uovabpq ad pisuvjog g (6L0Z) Je 39 885128 918658 0Z'LOS SED Es elpu ‘Bads sdaaian/9 bIsuvjD i | A HW HW q (‘pnays) wnyjAYydXxo windd0I0IAD pul el Pt aaa = , : ; SUyM = (2002) "Je 38 SIMAT OVOLZEAV SOLZ-VAW DD.LV We] WINOYIXD] WINDIUDd OD1XaIN) “4799 sma] "yg SuDUUTG DISUDIDg © L4al WNG4 S8z SL + (s)a2uasajay Jay non JUL] }SOH Ayye207 saineds 5 sjaquinu Uolssad.e yUeguay © — N “a]qejleae Jou ase e}ep UO!}eIO] JDeXd DIOP oO , Apnjs juasaid ay} Bulinp pajyesauab saduanbas 0} Jajas pjoq Ul Ua}]WM SJaquuNu UOISsaddy ‘sasAjeue d1JaUDHO|AYd ay} Ul Papnyjoul aeardezdIdIAe]D AjJwey yi Jo Saldads Huljdajul-jUe|d Jo eyep UdWIDAdS *L ayqeL (27102) ‘Je Ja Ja|day ‘(700Z) ‘Je J erojyeyeds Check List 15 (5) (SLOZ) ‘Je 38 UR (ZL0Z) “Je 38 YDOYIS (ZOOZ) ‘je 32 EyeueL (£661) []eMxDe/g pue eroyeyeds (6L07Z) 1239 NA (Z66L) ‘|e 18 Nepiny Apnjs juasaid Apnjs juasaid Apnjs juasaid (2702) "Je Ja Jajday ‘(p00Z) ‘Je 38 AungayjseD Apnjs uasald Apnjs juasaid Apnjs Juasaid Apnjs juasald Apnjs uasaid (2ZL0Z) ‘Je 12 Aa]/day “(€00Z) ‘Ie 39 SIND *(S66L) sjanwes pue JouYysy Apnjs juasaid (€102) "2 12 |pueyrs ‘(Z661) ‘Je 39 Nepiny (2661) ‘J 39 Nepjny (S00Z) “Je 38 WaAeYD (€L0Z) Je 19 [Preys «(Z661) ‘Je 39 Nepiny (VLOZ) J. 39 |Pseyrs (VLOZ) ‘}2. 39 |Pseyrs (s)a2uasayoy 738 O€€77SOA L6S89648V c89VOLNW L89VOLNW E8970LNW S89VOLNW LLLEVSAV O8970LNW 09S689d» 9S5689d™ 8S5689dy v9S689dy bLdaL L9Z81S0d LOVLVONE Lé8ZvN S690Z8HW ECLBON SLZO9ONW vLCO99IW ELTOOOIW EELO8VAV LOCO99NW 60C099NW OLCO9OMW 80C099IW LLCO99MW 96EZLN 90C099NW 8cELOOLODYAV OLL89N VC6986AV SLL89N VN S82 vC86vONf ELEEVONS ScvS90E8V SE86VONE LOCO99MW cOCO99ONW 00cO99IW E0TO99W CESOVONS 86L099NW 9ELZ01 SLI siaquinu uolssad.e yuequay L660LL DSO £66001 DYEN LO-ON C8S91L DLV L9'S9E SED VSL8L DLV €/81-60 SLOZA1 Z/L1-60 SLOZ91 L/vZ-60 SLO@1 cE-96 DAV es6v dW ELLS dW VLLS dW SS6rv dW 8S dW 6279S DILV 8€0¢ M1H LvVLO0T DLV ced SSSLOZ DDLV (614) 79906 DDLV vevolVv vosrs JaYyONoA ‘ds sanXwoydn)qz ‘ds sanXwoydby)qz ‘ds snjoqoiods umouyun) }deis (‘Dq) snj01z/9 uobodoquix) jdeis (‘Dq) snj01z/9 uobodoquixp "JSYDOH SisuasYyIs Uobodolpuy yjyuny snuviob uobodopuy yjyuny snuvipb uobodoipuy *y snoulb41A uUobodospuy snibiag ‘fq wnjypbn[uod winjodsbg aseyD (Y}UNY) s/suasNyD SIdajowoH ‘Aneag ‘d (MS) snssaidwio? sndouoxy ‘Aneag ‘d (MS) snssaidwio? sndouoxy aseyD (Yy}UNY) s/suasNyD SIdajowoH ‘| biqnu panjsa4 ‘Aneag ‘d (SPNH) WndQDA/As WNIpodkyo 1g ‘DUDUH (We) DIDUIS DIUADA|D "7 biqnu p2N\sa4 “PIILM X2 “1YNW snsojia snwiA/Z ‘qauyds DadDUIpUNID DIN\sa4 "Ss1Og SNj|j/aJUaWO} SNWO1g ‘aneagd (‘qasYydS) Wnjdasa WN Ajakyro1g JUB]d 1SOH uMoUyUN) ueder jedan e|puy e|pul e|pul ujuag uluag uluag Vvsn eweued eweued eweued eweued eDd1y &1SO> puejeaz7 MAN Auewla5 Vvsn umouyun vsn ,adoing jeiseing je2uaWYy YON Aye207 elojseyeds 99 Jajday ‘JpuenDO "WD (pAo]q) winzjuodbf wnippjdodAjo, elojseyeds 9 Jajday ‘jpuenDO "WD (YSWIOH) WinjDydp> wnippj,odAjoL Appay ‘Ad 8 2UYM ‘4T (QWOO1g 99 *419g) Dasauld a0/YyrIda1dd AayAy (*1ed4) snd04a/95 SNUIOIO/BIN AajAy (8d) snai042]95 snusODO/BIN KajAy KajAy KajAy KajAy ( ( (JE dq) SND1}O49]9s5 SNUIOIOIBIN (eq) SNI1}049]95 SNUIOIOIBIN (Jeg) sNINO4a]/95 sNUIOIOIBIN (Jeg) SNINO49/95 sNUIOIOIBIN lyaid (sin “WW 9 *yJag) DsSojUaWIDIJD DIodsouabouAy lyaid (sind “WW 9 *yJag) DSoJUaUIDIJD DIOdsoUaboLA lyaid (sind “WW 9 *y1ag) DSoJUaWIDIJD DIOdsoUuabouA lyaid (sin ‘WW 9 *yJag) DsSoJUaUIDIJD DIOdsoUaboLA lyaiq (sind “WW 9 *y1ag) DSoJUaWIDIJD DIOdsouabouAW lYyaid (sun “WW 9 *yJag) DsojUaWIDIJD DIOdsoOUaboLA "WyDOIg ("S1aq) DUIYAA} go] YyrIdZ JPALYDIS 99 “WYINA DIIJDA/As QO] YIIAZ "WYIND 79 |pseydS adLUAaIA/b aojyIidqz labals “UW B |PYeYDS “WYN avINISaj Boj YIIdF "WIYINT 9 |PAeYIS /WAja gojYyIIdz |PAeyds 9B UODeg ‘MD (SWIRD “M 9 sauUO(-UPBIJOW)) D/DIYdouaod aojYyIIdqW |PAeYIS "9 “WYN DjOI/WOIG 2ojYI/dJ “wyYyoNe] 8 |PAeYyrs 1IAJaXyr0I1q ao] YIIdJ saipads ‘panuljJuOoD *L ajqeL Cruz-Laufer et al. | Systematics and distribution Myriogenospora spp. 739 Figure 1. Balansia linearis (Myriogenospora linearis) on leaves of Chusquea subtessellata (MP 5242). A-C. Fresh specimen in the field. A. Infected shoot (arrow) and healthy shoot (right). B. Infected shoots. C. One linear stroma with ostioles of perithecia evident as warts. D. Transverse section of a leaf blade held in a rolled position by the fungal stroma including two perithecia below the black surface of the stroma as seen by light microscopy. Scale bar = 500 um. Host plants. Until now, Balansia linearis (M. linearis) is known from Chusquea sp., Olyra micrantha Kunth, Pariana sp. (Moller 1901; White and Glenn 1994), and Merostachys speciosa Spreng. (Moller 1901, cited as “Microstachys speciosa Spr.”, see explanation below) all classified in Bambusoideae (Poaceae). Here, we report B. linearis (M. linearis) on Chusquea subtessellata as anew host plant species. Moller (1901) reported Ophiodothis raphidospora Rehm (syn. of Myriogenospora linearis according to White and Glenn, 1994) on Microstachys speciosa Spr. for Brazil. The name of the host species is questionable as the genus Microstachys A. Juss. belongs to Euphorbi- aceae and the name Microstachys speciosa is not validly published (see http://www.ipni.org). Due to the similar spelling of the name, the identical author, and the classifi- cation in Bambusoideae (Poaceae), we assume that Moller (1901) wanted to cite Merostachys speciosa Spreng. Taxonomy. According to the most recent study on spe- cies of Myriogenospora presented by White and Glenn (1994), the fungus collected on Chusquea subtessellata in Costa Rica should be cited as M. linearis (Rehm) J.F. White & Glenn. We consider an older name, Balansia linearis (Rehm) Diehl, to be more convenient based on molecular sequence data, microscopical characteristics, and the host relationship (for details see below). Myriogenospora atramentosa (Berk. & M.A. Curtis) Diehl, Agric. Monogr. No. 4: 59 (1950) Figures 3B, 4, 5 Material examined. Costa Rica * Limon Province, Valle de Talamanca, 26 Oct. 1992; M. Piepenbring leg., MP 528 (M 141354; USJ109407). Panama ¢ Chiriqui Province, Dolega, Los Algarro- bos, path close to house of S. Caceres; 08°29'36" N, 082° 25'31" W; alt. about 150 m a.s.1.; 8 Mar. 2010; M. Piepen- bring, T. Hofmann leg.; MP 4953 (M_ 141355; PMA; UCH). * Chiriqui Province, border of road to Chiriqui Grande, before arriving at Fortuna, close to entrance of La Suiza; 08°39'24" N, 082°12'37" W; alt. about 1,150 ma.s.l.; 08 Mar. 2010; M. Piepenbring, O. Caceres leg.: MP 4955 (M 141356; PMA; UCH). * Chiriqui Province, road to Chorogo; alt. about 400 m a.s.1.; 13 Jul. 2012; M. Piepenbring, D. Caceres, A. Krohn, M. Rosas leg.; on leaves of Homolepis aturensis (Kunth) Chase (det. M. Piepenbring); MP 5113 (M 141357). * Chiriqui Province, road to Chorogo; alt. about 400 m a.s.1.; 13 July 2012; M. Piepenbring, D. Caceres, A. Krohn, M. Rosas leg.; on 740 Check List 15 (5) M Se a Sher wee? Figure 2. Balansia linearis (Myriogenospora linearis) on leaves of Chusquea subtessellata (MP 5242), as seen by light microscopy. A. Trans- verse section of a leaf blade with a fungal stroma (dots) including two perithecia. B. Part of a transverse section of an infected leaf with one perithecium. C. Ascus with ascospores. D. Ascus tip with a light refractive body. E. Ascospore fragments resulting from incomplete ascospore fragmentation (left) and cylindrical part-spores resulting from completed ascospore fragmentation. Scale bars: A = 1000 um; B = 500 um; C = 100 um; D = 20 um; E = 100 um. A Figure 3. Maps showing known distribution and localities of new records and specimens. A. Balansia linearis (Myriogenospora linearis). B. Myriogenospora atramentosa. Localities of new records and specimens are indicated by red dots. The occurrence of these species in different countries according to literature is indicated by bright colors. Cruz-Laufer et al. | Systematics and distribution Myriogenospora spp. 741 Figure 4. Myriogenospora atramentosa on leaves of Paspalum con- jugatum in the field (MP 4953). A. Infected plants. B. An infected plant with black stromata wrapped in leaf blades. leaves of Axonopus compressus (Sw.) P. Beauv. (det. M. Piepenbring); MP 5114 (M 141358). Identification. Infected shoots of the host plants with- out flowers and with all leaves presenting stromata. Stro- mata wrapped in leaf blades except for a linear exposed part containing perithecia, epibiotic, one to several cen- timeters long, hyaline except for black outer surface. Leaf blades held together by a hyaline plectenchyma consisting of fungal mycelium in rolled or folded posi- tion (supervolute or conduplicate ptyxis). Perithecia immersed, arranged in one row, globose or subglobose, (225—)290—400(—465) x (235—)275-360(—440) um. Osti- oles appear as warts on the black outer stroma surface. Asci fusiform (cylindrical when young), unitunicate, containing numerous part-spores, (120—)135—255(-330) x (5—)8—16(—21) um with dome-shaped ascus tips with- out light refractive bodies. Part-spore initials resulting from ascospore fragmentation ovoid to slightly fusiform, immediately growing at both tips and becoming mature part-spores, elongated fusoid, without septa, containing guttules, (20—)29-39(—45) x (0.5—)1.0—2.0 um, hyaline, smooth. Synonyms. Hypocrea atramentosa Berk. & M.A. Cur- tis. Epichloé atramentosa (Berk. & M.A. Curtis) Cooke. Hypocrella atramentosa (Berk. & M.A. Curtis) Sacc. Type. Cuba, no date, on Andropogon sp., C. Wright 419 (holotype, K(M) 198287). For heterotypic synonyms see White and Glenn (1994). Figure 5. Myriogenospora atramentosa. A. Transverse section of a leaf blade of Homolepis aturensis with one perithecium (MP 528). B. Asci at different stages of development (MP 5114). C. Dome-shaped ascus tip (MP 4953). D. Two part-spore initials (on the left side) and four more or less mature part-spores after bipolar growth (MP 5114). Scale bars: A = 500 um; B = 100 um; C= 50 um, D = 20 um. 742 Known distribution. Until now, Myriogenospora atra- mentosa is known from Brazil, Colombia, Cuba, the Dominican Republic, Grenada, Nicaragua, Panama, Peru, Puerto Rico, Trinidad and Tobago, the United States, and Venezuela (Seaver and Chardon 1926; Viégas 1944; Hanlin and Tortolero 1990; Kirschner et al. 2010; Lenné 1990). The species has also been cited for Ghana, Nigeria, and Sierra Leone (Deighton 1936a; Lenné and Calderon 1989; Lenné 1990). Here, we report M. atra- mentosa for Costa Rica for the first time (Fig. 3B). Known host plants. Until now, Myriogenospora atra- mentosa is known from Andropogon bicornis L., A. gayanus Kunth, A. leucostachyus Kunth, A. virginicus L., Axonopus compressus (Sw.) P. Beauv., Brachiaria mutica (Forssk.) Stapf, Chloris gayana Kunth, Cymbo- pogon sp., Eragrostis hirsuta (Michx.) Nees, Eremo- chloa ophiuroides (Munro) Hack., [chnanthus pallens (Sw.) Munro ex Bent., /mperata brasiliensis Trin., Pani- cum anceps Michx., P. hemitomon Schult., P. scoparium Lam., Paspalum ciliatifolium Michx., P. conjugatum P.J. Bergius, P. dilatatum Poir., P. laeve Michx., P. notatum Fligge, P. pilosum Lam., P. scrobiculatum L., P. urvillei Steud., Saccharum brevibarbe (Michx.) Pers., S. contor- tum (Elliott) Nutt., S. giganteum (Walter) Pers., S. offi- cinarum L., Schizachryrium scoparium (Michx.) Nash, Sorghastrum nutans (L.) Nash, Sporobolus indicus (L.) R.Br., and Tridens flavus (L.) Hitche. (Seaver and Char- don 1926; Deighton 1936b; Viégas 1944; USDA Crops Research Division Agriculture Research Service 1960; Luttrell and Bacon 1977; Hanlin and Tortolero 1990; Lenné 1990). Here, we report M. atramentosa on Homo- lepis aturensis (Kunth) Chase for the first time. Viégas (1944) cited Microstachys speciosa as host species of M. atramentosa. We assume that Viégas (1944) copied this information from Moller (1901) (see above) and erroneously considered M. linearis a syn- onym of M. atramentosa. Phylogenetic analysis We extracted DNA from Myriogenospora spp. (see spec- imen data above) and from specimens of additional spe- cies of Clavicipitaceae: Balansia discoidea Henn. Costa Rica * Limon Prov- ince, Puerto Viejo de Talamanca, between Coclé and Punta Uva, Finca One World; 09°37'31" N, 082°42'56" W; alt. approx. 46 m a.s.l.; 3 Jan. 2015; M. Piepenbring, C. Tiemann, O. Caceres, M. Eichenlaub, M. Mardones leg.; on leaves of Panicum pilosum Sw. (det. M. Piepen- bring); MP 5239b (M 141350). Balansia sp. Mexico * Yucatan Province, between Mérida and Chichen Iza, Libre Union; alt. approx. 10 m a.s.l.; 21 Oct 1995; M. Piepenbring leg.; on leaves of Bothriochloa pertusa (L.) A. Camus (det. M. Piepen- bring); MP 1934 (M 141352). Epichloé sylvatica Leuchtm. & Schardl. Germany ¢ Hesse State, Kreis GroB-Gerau, Morfelden-Walldorf, close to parking ground “Schtitzenhaus”; 49°58'16" N, Check List 15 (5) 008°32'33" E; alt. approx. 150 m a.s.1.; 15 Jun. 2013; H. Lotz-Winter leg.; on leaves of Brachypodium sylvaticum (Huds.) P. Beauv. (det. H. Lotz-Winter); HLW 2038 (M 141353). Nigrocornus scleroticus (Pat.) Ryley. Benin ° Atakora Department, Kossokouangou; 10°10'37" N, 001°12'13" E; alt. approx. 570 m a.s.l.; 17 Sep. 2015; L. Beenken, N. S. Yorou, M. Piatek, R. Mangelsdorff et al. leg.; on leaves of Andropogon gayanus Kunth (det. pre- lim. M. Piatek); LB 2015.09.17/1 (M 141359; UNIPAR). ¢ Atakora Department, at road RN11 South of Kouandé; 10°15'37" N, 001°39'15" E; alt. approx. 490 m a.s.l.; 18 Sep. 2015; L. Beenken, N. S. Yorou, M. Piatek, R. Man- gelsdorff et al. leg.; on leaves of Andropogon schiren- sis Hochst. (det. M. Piepenbring); LB 2015.09.18/1 (M 141360; UNIPAR). * Borgou Department, Wari Maro, South of Mont Soubakperou; 09°08'20" N, 002°09'42" E; alt. approx. 410 m a.s.1., 24 Jul. 2015; L. Beenken, N. S. Yorou, M. Piatek, R. Mangelsdorff et al. leg.; on leaves of Andropogon gayanus Kunth (det. prelim. M. Piatek); LB 2015.09.24/1 (M 141362; UNIPAR). In total, we generated 24 sequences for six species of Clavicipitaceae including 21 sequences for five species of Balansieae. These sequences correspond to six ITS sequences, 12 nrLSU sequences, and six TEF1 sequences. Sequence alignments included 19 sequences/560 base pairs for ITS, 39/589 for LSU, and 23/999 for TEF1. The combined sequence data set includes 46 specimens of 33 species and had an aligned length of 2148 base pairs. The Bayesian inference analysis and the ML analy- ses resulted in similar topologies; therefore, we present here only the ML tree for this dataset (Fig. 6). According to our results, the family Clavicipitaceae (100/1.00) as well as the tribes Balansieae (84/0.97) and Clavicipiteae (79/0.98) including the genera Claviceps (four species) and Epichloé (10 species) are monophyletic with signifi- cant statistical support. The genera Claviceps (94/1.00) and Epichloé (99/1.00) are also monophyletic. Within Balansieae, we found four monophyletic clades (A—D), three of them with significant statistical support. The Myriogenospora clade (A) (100/1.00) includes the spe- cies M. atramentosa (6 specimens). The Nigrocornus clade (B) (70/0.95) includes the species B. nigricans (1 specimen) and N. scleroticus (6 specimens). The first Balansia clade (C) (14/0.50) shows no significant support and includes the species B. claviceps (type species of Balansia), B. cyperi, B. hypoxylon, B. texensis, Ephelis Japonica, M. linearis, and Parepichloé cinerea. The sec- ond Balansia clade (D) (75/0.97) includes the species B. brunnans, B. sp., B. discoidea, B. epichloé, B. henning- siana, B. pilulaeformis, and B. strangulans. We found no clustering of M. linearis and the type species of Myrio- genospora, 1.e., M. atramentosa. Instead, M. linearis is embedded in a clade comprising of mostly Balansia spp. Therefore, we refer to the specimen MP5242 from Costa Rica by the name Balansia linearis (M. linearis). Cruz-Laufer et al. | Systematics and distribution Myriogenospora spp. 743 400/1.0 Tolypocladium japonicum OSC110991 Tolypocladium capitatum NBRC100997 Claviceps paspali AT CC13892 Bai Claviceps ranunculoides AF 245295 Claviceps fusiformis AT CC26019 79/0.98 Claviceps africana BP|806256 Epichloé bromicola ALO434 94/1.0 Epichloé glyceriae £277 99/1.0|- Epichloé brachyelytri E4804 Epichloé sylvatica MP2038 Epichloé amarillans E57 Epichloé amarillans U57680 Epichloé baconii AT CC200745 Epichioé elymi C.Schardl 760 Epichloé typhina AJ CC56429 991.0. Enichloé coenophiala E19 7Al- ® © ® its = = > a O 100/1.0 Clavicipitaceae Epichloé festucae E32 ‘Balansia’ nigricans 8252 ‘Nigrocornus scleroticus AT CC 18154 @ > pos S o ~ Balansieae NS 70/-_| 77). Nigrocornus scleroticus AT CC 16582 75/- Nigrocornus scleroticus CBS365.67 B ‘Nigrocornus scleroticus \.B2015_09-17/2 79/0.95 97/1.0 99/1.0 Nigrocornus scleroticus 82015_09-18/3 Nigrocornus scleroticus B2015_09-24/1 Balansia sp. WiP1934 Balansia strangulans B493 7510.97 Balansia epichloe B113 "000° | Balansia pilulaeformis ATCC90722 D | 73/-| —Balansia brunnans AY 327046 Balansia henningsiana AEG96-27a Balansia discoidea WP5239 0.1 Balansia epichloe AEG96-15a a Figure 6. Phylogenetic relationships within the tribe Balansieae (Clavicipitaceae, Hypocreales, Ascomycota) focusing on Myriogenospora spp. This maximum likelihood (ML) phylogeny is based on three nuclear markers (nrLSU, ITS, TEF1). Support values are ML bootstrap values based on 1000 replicates and posterior probabilities from a Bayesian analysis. Values of ML BS >70% and Bayesian PP > 0.95 are given at nodes at the first and second positions, respectively. Internal branches considered strongly supported by both analyses are indicated by thickened branches. 744 Discussion We propose to place Myriogenospora linearis in the genus Balansia as B. linearis (Rehm) Diehl due to (i) the contradictions of key morphological characteristics pre- sented by White and Glenn (1994) with observations by us, Pazschke (1896), Moller (1901), and von Hohnel (1910), (11) no support for a close relationship of B. linearis (M. linearis) with M. atramentosa (type species) in our phylo- genetic analysis, and (111) different host relationships. (1) White and Glenn (1994) described B. linearis (M. linearis) part-spores as fusoid with a resemblance to M. atramentosa part-spores. However, our morpho- logical analysis showed the presence of cylindrical part- spores with blunt tips for B. linearis (M. linearis). Earlier studies describe these part-spores as filiform (Pazschke 1896; von Hohnel 1910) or rod-shaped (Moller 1901). The distinct ascus morphologies further highlight the dispar- ity of the two species as the ascus tips of B. Jinearis (M. linearis) are truncate and present light refractive bodies as in most clavicipitaceous and balansioid fungi (Jones and Clay 1987) whereas the dome-shaped tips of 7. atramentosa are a unique, possibly derived feature of this species (Luttrell and Bacon 1977). We believe that these inaccuracies in the part-spore description might have been caused by a deteriorated state of the B. Jinearis (M. linearis) specimens examined by White and Glenn (1994) caused by the age of the material, as their most recent specimen was collected in 1934. Furthermore, the language barrier could be a source of errors as the rel- evant studies (Moller 1901; von Héhnel 1910) were pub- lished in German. (11) We found no evidence for a monophyletic clade that includes Balansia linearis (M. linearis) and M. atra- mentosa. Therefore, B. linearis is unlikely a member of Myriogenospora despite the similar linear stromata wrapped in leaf blades. (1i1) Host plants of Balansia linearis (M. linearis) are classified as members of the BOP clade whereas ©. atramentosa hosts are classified in the PACMAD clade of Poaceae (Grass Phylogeny Working Group II 2012; Soreng et al. 2015). All fungi reported as B. linearis (M. linearis) infect species of the subfamily Bambusoideae, whereas M. atramentosa infects species of Chloroideae and Panicoideae. This difference in host range empha- sizes the disparity between the B. /inearis (M. linearis) and M. atramentosa. By placing B. linearis (M. linearis) and M. atramen- tosa in distinct genera, we conclude that the presence of linear epibiotic stromata with regular files of perithecia surrounded by leaf blades and numerous part-spores in the asci are less indicative of systematic relationships than ascus tip structure and part-spore shape. Our study on Myriogenospora spp. demonstrates that we require more information on Balansieae systematics to optimize our knowledge on the systematic position of balansioid fungi such as B. linearis (M. linearis). This study confirms that the tribe Balansieae, which includes Check List 15 (5) the genera Balansia, Ephelis, Myriogenospora, Nigro- cornus, and Parepichloé, is monophyletic but also high- lights the need of a systematic revision of this taxon; we found at least three clades in Balansieae with significant support. All clades included Balansia species grouped with species from Nigrocornus and Parepichloé. These relationships confirm the paraphyly of the genus Balan- sia mentioned in previous studies (Kuldau et al. 1997; White et al. 2000). Some studies have created new mono- typic balansioid genera based on morphological observa- tions such as Nigrocornus and Parepichloé (White and Reddy 1998; Ryley 2003). Hence, an updated systematic revision could also lead to a classification of B. /inearis (M. linearis) in its own separate genus as Linearistroma lineare (Rehm) Hohn. However, we recommend treating L. lineare as a member of Balansia until detailed mor- phological and complete molecular data of more species of Balansieae are available, especially those infecting BOP clade hosts such as Balansia nigricans, B. texensis, and Heteroepichloé spp. (Leuchtmann and Clay 1989; White et al. 1996; Tanaka et al. 2002). Some of the species included in the phylogenetic analysis have broad geographical distributions spanning continents such as B. claviceps and M. atramentosa, which are reported from Old and New World habitats, or N. scleroticus, which is reported from Africa (.e., Benin), Asia (i.e., India), and Australia. Misidentified Specimens and the usage of species names for species complexes could cause these inaccuracies such as for B. claviceps, whose Asian specimens resemble descriptions of B. andropogonis Syd. (Leuchtmann 1993; Reddy et al. 1998). As M. atramentosa is reported from the Ameri- cas and Africa, specimens from these continents might belong to different species. Hence, sampling and gener- ating sequence data from a range of populations could elucidate species identity, phylogenetic relationship, and geographical distribution of MZ atramentosa specimens. Future research should focus on fieldwork to obtain more fresh specimens of the generally rare and there- fore poorly collected plant pathogenic species of Hypo- creales (see Judith et al. 2015). These specimens will allow detailed morphological analyses and the genera- tion of larger and more complete sequence data sets that will increase the statistical power of phylogenetic analy- ses for Balansieae. This approach combined with a host range analysis could resolve the systematics of this tribe and provide a systematically correct classification of B. linearis (M. linearis) amongst other balansioid fungi. Acknowledgements We are thankful to L. Beenken and H. Lotz-Winter for contributing specimens as well as to numerous friendly collaborators in the field, namely D. Caceres, O. Caceres, M. Eichenlaub, T.A. Hofmann, A. Krohn, R. Mangelsdorff, M. Piatek, N.S. Yorou, M. Rosas, and C. Tiemann. O. Caceres, T.A. Hofmann, and N.S. Yorou col- laborated for collection permits. Cruz-Laufer et al. | Systematics and distribution Myriogenospora spp. 745 We acknowledge institutional support by the Univer- sidad Autonoma de Chiriqui (Panama), Universidad de Costa Rica (Costa Rica), and the Université de Parakou (Benin). The field activities in Central America were made possible with the financial support of the Ger- man Research Foundation (DFG) and the German Aca- demic Exchange Service (DAAD), those in Africa with the financial support of the Volkswagen Foundation. We thank the Autoridad Nacional del Ambiente (ANAM) in Panama and MINAE (SINAC and CONAGEBIO) in Costa Rica for collecting and export permits. We thank anonymous reviewers for improving the manuscript. Authors’ Contributions AC conducted detailed morphological and molecular analyses, contributed scientific drawings. AC and MM conducted phylogenetic analyses. MM compiled figures and tables and submitted sequences to GenBank. MP contributed most specimens, photos of fungi in the field, identified host plants, did preliminary identifications of the fungi, organized the infrastructure and permits. AC and MP wrote this article with input from MM. References Atkinson GF (1894) Steps toward a revision of the linosporous spe- cies of North American graminicolous Hypocreaceae. Bul- letin of the Torrey Botanical Club 21: 222—225. https://doi.org/ 10.2307/2477964 Bacon CW, Porter JK, Robbins JD (1975) Toxicity and occurrence of Balansia on grasses from toxic fescue pastures. Applied Micro- biology 29: 553-556. Ban S, Sakane T, Nakagiri A (2015) Three new species of Ophio- cordyceps and overview of anamorph types in the genus and the family Ophiocordycipitaceae. Mycological Progress 14.1: 1017. https://doi.org/10.1007/s11557-014-1017-8 Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556. https://doi.org/10.2307/3761358 Castlebury LA, Rossman AY, Sung G-H, Hyten AS, Spatafora JW (2004) Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108: 864-872. https://doi.org/10.1017/S0953756204000607 Chaverri P, Bischoff JF, Liu M, Hodge KT (2005) A new species of Hypocrella, H. macrostroma, and its phylogenetic relationships to other species with large stromata. Mycological Research 109: 1268-1275. Clay K, Hardy TN, Hammond AM (1985) Fungal endophytes of grasses and their effects on an insect herbivore. Oecologia 66: 1-5. https://dot.org/10.1007/BF00378545 Clay K, Cheplick GP, Marks S (1989) Impact of the fungus Balansia henningsiana on Panicum agrostoides: frequency of infection, plant growth and reproduction, and resistance to pests. Oecologia 80: 374-380. https://doi.org/10.1007/BF00379039 Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung G-H, Spatafora JW, Straus NA (2003) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science (New York, N.Y.) 299: 386-388. https://doi.org/10.1126/science.1078155 Deighton FC (1936a) List of fungi collected in Sierra Leone. Bul- letin of Miscellaneous Information (Royal Gardens, Kew) 1936: 424—433. https://doi.org/10.2307/4111839 Deighton FC (1936b) Preliminary list of fungi and diseases of plants in Sierra Leone. Bulletin of Miscellaneous Information (Royal Gardens, Kew) 1936: 397-424. https://doi.org/10.2307/4111838 Grass Phylogeny Working Group II (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. The New Phytologist 193: 304-312. https://doi.org/10.1111/j.1469- 8137.2011.03972.x Hanlin RT, Tortolero O (1990) Icones Ascomycetum Venezuelae: Myriogenospora atramentosa. Mycotaxon 39: 237-244. Jones JP, Clay K (1987) Ascus and crozier development in the Balan- siae. Canadian Journal of Botany 65: 1027-1030. https://doi.org/ 10.1139/b87-142 Judith C, Rossman AY, Kennedy AH, Caceres O, Piepenbring M (2015) Microchrysosphaera graminicola, an enigmatic new genus and species in the Hypocreales from Panama. Mycological Progress 14(9): 72. https://doi.org/10.1007/s11557-015-1095-2 Kallenbach RL (2015) Bill E. Kunkle Interdisciplinary Beef Sympo- sium. Coping with tall fescue toxicosis: Solutions and realities. Journal of Animal Science 93: 5487-5495. https://doi.org/10.2527/ jas.2015-9229 Kepler RM, Sung G-H, Ban S, Nakagiri A, Chen M-J, Huang B, Li Z, Spatafora JW (2012a) New teleomorph combinations in the ento- mopathogenic genus Metacordyceps. Mycologia 104: 182-197. https://doi.org/10.3852/11-070 Kepler RM, Sung G-H, Harada Y, Tanaka K, Tanaka E, Hosoya T, Bischoff JF, Spatafora JW (2012b) Host jumping onto close rela- tives and across kingdoms by Zyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea (Clavicipitaceae). American Journal of Botany 99: 552-561. https://do1.org/10.3732/ajb.1100124 Kirschner R, Arauz V, Herbst F, Hofmann TA, Ix S, Nozon T, Piepen- bring M (2010) A new species of Puttemansia (Tubeufiaceae, Pleosporales) and new records of further Ascomycota from Panama. Sydowia 62: 225-241. Kuldau GA, Liu J-S, White JF, Siegel MR, Schardl CL (1997) Molecu- lar systematics of Clavicipitaceae supporting monophyly of genus Epichloé and form genus Ephelis. Mycologia 89: 431—441. https:// doi.org/10.2307/3761037 Kusari S, Singh S, Jayabaskaran C (2014) Biotech- nological potential of plant-associated endophytic fungi: hope versus hype. Trends in Biotechnology 32: 297-303. https://do1.org/10.1016/j.tibtech.2014.03.009 Lenné JM (1990) A world list of fungal diseases of tropical pasture species. Phytopathological paper, vol 31. CAB International, Wallingford, 162 pp. Lenné JM, Calderon M (1989) Problemas causados por plagas y enfermedades en Andropogon gayanus. In: Toledo JM, Vera R, Lascano C, Lenné J (Eds) Andropogon gayanus Kunth: Un pasto para los suelos acidos del tropico. CIAT, Cali, Colombia, 191—233. Leuchtmann A (1993) Systematics, distribution, and host specificity of grass endophytes. Natural Toxins 1: 150-162. https://doi.org/ 10.1002/nt.2620010303 Leuchtmann A, Clay K (1989) Morphological, cultural and mating studies on Atkinsonella, including A. texensis. Mycologia 81: 692-701. https://doi.org/10.2307/3759873 Lewis EA, Bills GF, Heredia G, Reyes M, Arias RM, White JF (2002) A new species of endophytic Balansia from Veracruz, Mexico. Mycologia 94: 1066-1070. https://doi.org/10.2307/3761872 Luttrell ES, Bacon CW (1977) Classification of Myriogenospora in the Clavicipitaceae. Canadian Journal of Botany 55: 2090-2097. https://doi.org/10.1139/b77-236 Mardones M, Trampe-Jaschik T, Oster S, Elliott M, Urbina H, Schmitt I, Piepenbring M (2017) Phylogeny of the order Phyl- lachorales (Ascomycota, Sordariomycetes): among and within order relationships based on five molecular loci. Persoonia 39: 74-90. https://doi.org/10.3767/persoonia.2017.39.04 Moller A (1901) Phycomyceten und Ascomyceten: Untersuchungen aus Brasilien. Botanische Mittheilungen aus den Tropen, vol 9. 746 Gustav Fischer, Jena, 319 pp. O‘Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (Eds) The fungal holomorph. Mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB Interna- tional, Wallingford, 225—233. Pazschke O (1896) II. Verzeichnis brasilianischer von E. Ule gesam- melter Pilze. Hedwigia 35: 50—SS. Reddy PV, Bergen MS, Patel R, White JF (1998) An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia 90: 108-117. https://doi.org/10.2307/3761019 Rehner SA, Samuels GJ (1995) Molecular systematics of the Hypoc- reales: a teleomorph gene phylogeny and the status of their ana- morphs. Canadian Journal of Botany 73: 816—823. https://doi.org/ 10.1139/b95-327 Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1- sequences: evidence for cryptic diversifica- tion and links to Cordyceps teleomorphs. Mycologia 97: 84—98. https://doi.org/10.3852/mycologia.97.1.84 Ren A, Clay K (2009) Impact of a horizontally transmitted endophyte, Balansia henningsiana, on growth and drought tolerance of Panicum rigidulum. International Journal of Plant Sciences 170: 599-608. https://doi.org/10.1086/597786 Ryley M (2003) Nigrocornus scleroticus, a common Old World balan- sioid fungus. In: White J, Bacon C, Hywel-Jones N, Spatafora J (Eds) Clavicipitalean fungi. Evolutionary biology, chemistry, bio- control, and cultural impacts, vol 8. Marcel Dekker, New York, Basel, 247-272. Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass lit- erature. Trends in Plant Science 11: 428—433. https://doi.org/ 10.1016/j.tplants.2006.07.001 Schardl CL, Young CA, Moore N, Krom N, Dupont P-Y, Pan J, Florea S, Webb JS, Jaromczyk J, Jaromczyk JW, Cox MP, Farman ML (2014) Genomes of plant-associated Clavicipitaceae. In: Martin F (Ed.) Fungi, first edition, vol. 70. Academic Press, Amsterdam, 291-327. Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Guldener U, Harris DR, Hollin W, Jarom- czyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013) Plant-symbi- otic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genetics 9: e1003323. https://doi.org/10.1371/journal.pgen.1003323 Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Pro- ceedings of the National Academy of Sciences of the United States of America 109: 6241-6246. https://doi.org/10.1073/pnas.1117018109 Seaver FJ, Chardon CE (1926) Botany of Porto Rico and the Virgin Islands. Mycology. Scientific survey of Porto Rico and the Virgin Islands, vol. 8(1). New York Academy of Sciences, New York, 208 pp. Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judyiewicz EJ, Filgueiras TS, Davis JI, Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gra- mineae). Journal of Systematics and Evolution 53: 117-137. https://doi.org/10.1111/jse.12150 Spatafora JW, Blackwell M (1993) Molecular systematics of unitunicate perithecial ascomycetes: The Clavicipitales—Hypocreales connec- tion. Mycologia 85: 912-922. https://doi.org/10.2307/ 3760674 Spatafora JW, Sung G-H, Sung J-M, Hywel-Jones NL, White JF Check List 15 (5) (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Molecular ecology 16: 1701-1711. https://doi.org/10.1111/j.1365-294X.2007.03225.x Suh S-O, Spatafora JW, Ochiel GRS, Evans HC, Blackwell M (1998) Molecular phylogenetic study of a termite pathogen Cordy- cepioideus bisporus. Mycologia 90: 611-617. https://doi.org/ 10.2307/3761220 Sullivan R, Bergen MS, Patel R, Bills GF, Alderman SC, Spatafora JW, White JF (2001) Features and phylogenetic status of an enig- matic clavicipitalean fungus Neoclaviceps monostipa gen. et sp. nov. Mycologia 93: 90-99. https://doi.org/10.2307/3761608 Sung G-H, Hywel-Jones NL, Sung J-M, Luangsa-Ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5-59. https://doi.org/10.3114/sim.2007.57.01 Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites (1987 to 2000). Natural Product Reports 18: 448-459, https://doi.org/10.1039/b1009180 Tanaka E, Tanaka C, Tsuda M, Gafur A (2002) Heteroepichloé, gen. nov. (Clavicipitaceae; Ascomycotina) on bamboo plants in East Asia. Mycoscience 43: 87-93. https://doi.org/10.1007/S102670200014 Tsai HF, Liu JS, Staben C, Christensen MJ, Latch GC, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endo- phytes of tall fescue grass by hybridization with Epichloé species. Proceedings of the National Academy of Sciences of the United States of America 91: 2542-2546. USDA Crops Research Division Agriculture Research Service (1960) Index of plant diseases in the United States. Plant pests of impor- tance to North American agriculture. Agriculture handbook, vol. 165. United States Department of Agriculture, Washington, DC, 537 pp. Viegas AP (1944) Alguns fungos do Brasil II. Ascomicetos. Bragantia 4: 5-392. https://doi.org/10.1590/S0006-87051944000100001 von Hohnel F (1910) Fragmente zur Mykologie (XII. Mitteilung, Nr. 574 bis 641). Sitzungsberichte der Kaiserlichen Akadamie der Wissen- schaften Wien, mathematisch-naturwissenschaftliche Klasse 119: 877-958. Vu D, Groenewald M, Vries M de, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boek- hout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fun- gal species and higher taxon delimitation. Studies in Mycology 92: 135-154. https://doi.org/10.1016/}.simyco.2018.05.001 White JF, Glenn AE (1994) A study of two fungal epibionts of grasses: structural features, host relationships, and classification in the genus Myriogenospora (Clavicipitales). American Journal of Botany 81: 216—223. https://doi.org/10.2307/2445636 White JF, Reddy PV (1998) Examination of structure and molecular phylogenetic relationships of some graminicolous symbionts in genera Epichloé and Parepichloé. Mycologia 90: 226-234. https://doi.org/10.2307/3761298 White TJ, Bruns T, Lee S, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR pro- tocols. A guide to methods and applications, vol 18. Academic Press, San Diego, 315-322. White JF, Drake TE, Martin TI (1996) Endophyte-host associations in grasses. X XIII. A study of two species of Balansia that form stromata on nodes of grasses. Mycologia 88: 89-97. https://do1. org/10.2307/3760787 White JF, Sullivan R, Moy M, Patel R, Duncan R (2000) An overview of problems in the classification of plant-parasitic Clavicipita- ceae. Studies in Mycology 45: 95-105. Yokoyama E, Arakawa M, Yamagishi K, Hara A (2006) Phyloge- netic and structural analyses of the mating-type loci in Clavi- cipitaceae. FEMS Microbiology Letters 264: 182-191. https://doi. org/10.1111/).1574-6968.2006.00447.x